Как из неустойчивой системы сделать устойчивую. Определение устойчивости систем автоматического управления промышленными роботами

В этом разделе рассматриваются важнейшие характеристики качества управляемых систем. Этими характеристиками являются устойчивость систем, точность и помехоустойчивость.

Понятие устойчивости относится к ситуации, когда входные сигналы системы равны нулю, т.е. внешние воздействия отсутствуют. При этом правильно построенная система должна находиться в состоянии равновесия (покоя) или постепенно приближаться к этому состоянию. В неустойчивых системах даже при нулевых входных сигналах возникают собственные колебания и, как следствие, – недопустимо большие ошибки.

Понятие точности связано с качеством работы управляемых систем при изменяющихся входных сигналах. В правильно спроектированных системах управления величина рассогласования между заданным законом управления g(t) и выходным сигналом x(t) должна быть мала.

Наконец, для характеристики влияния помех на системы управления используют дисперсию или среднее квадратическое отклонение составляющей ошибки за счет действия помех.

Понятие устойчивости

Одним из первых вопросов, возникающих при исследовании и проектировании линейных систем управления, является вопрос об их устойчивости. Линейная система называется устойчивой , если при выведении ее внешними воздействиями из состояния равновесия (покоя) она возвращается в него после прекращения внешних воздействий. Если после прекращения внешнего воздействия система не возвращается к состоянию равновесия, то она является неустойчивой . Для нормального функционирования системы управления необходимо, чтобы она была устойчивой, так как в противном случае в ней возникают большие ошибки.

Определение устойчивости обычно проводят на начальном этапе создания системы управления. Это объясняется двумя причинами. Во-первых, анализ устойчивости довольно прост. Во-вторых, неустойчивые системы могут быть скорректированы, т.е. преобразованы в устойчивые с помощью добавления специальных корректирующих звеньев.

Анализ устойчивости с помощью алгебраических критериев

Устойчивость системы связана с характером ее собственных колебаний. Чтобы пояснить это, предположим, что система описывается дифференциальным уравнением

или, после преобразования Лапласа,

где g(p) – входное воздействие.

Устойчивая система возвращается в состояние покоя, если входное воздействие g(p) 0 . Таким образом, для устойчивой системы решение однородного дифференциального уравнения должно стремиться к нулю при t стремящемся к бесконечности.

Если найдены корни p1, p2, ... , pn характеристического уравнения , то решение однородного уравнения запишется в виде .

В каких же случаях система устойчива?

Предположим, что pk = ak – действительный корень.

Ему соответствует слагаемое ck. При ak < 0 это слагаемое будет стремиться к нулю, если t стремится к бесконечности. Если же ak > 0, то x(t) , когда t стремится к бесконечности; . Наконец, в том случае, когда ak = 0, рассматриваемое слагаемое не изменяется и при t стремящемся к бесконечности,

Допустим теперь, что – комплексный корень характеристического уравнения. Заметим, что в этом случае также будет корнем характеристического уравнения. Двум комплексно-сопряженным корням будут соответствовать слагаемые вида , .

При этом, если ak < 0, то в системе имеются затухающие колебания. При ak > 0 – колебания возрастающей амплитуды, а при ak = 0 -колебания постоянной амплитуды сk.

Таким образом, система устойчива, если действительные части всех корней характеристического уравнения отрицательны. Если хотя бы один корень имеет действительную часть ak ³ 0, то система неустойчива. Говорят, что система находится на границе устойчивости, если хотя бы один корень характеристического уравнения имеет нулевую действительную часть, а действительные части всех остальных корней отрицательны.

Это определение хорошо иллюстрируется геометрически. Представим корни характеристического уравнения точками на комплексной плоскости (рис. 15).

Если все корни лежат в левой полуплоскости комплексного переменного, то система устойчива. Если хотя бы один корень лежит в правой полуплоскости комплексного переменного - система неустойчива. Если же корни находятся на мнимой оси и в левой полуплоскости, то говорят, что система находится на границе устойчивости.

Рассмотрим в качестве примера замкнутую систему управления c одним интегрирующим звеном. В этом случае H(p) = , , а передаточная функция замкнутой системы

.

Выходной сигнал системы x(p) = W(p)g(p) или . Заметим, что характеристическое уравнение p+k=0 записывается с помощью приравнивания к нулю знаменателя передаточной функции замкнутой системы управления. В данном случае имеется один корень p1= -k < 0 и поэтому система управления всегда устойчива. Предположим теперь, что . Тогда . Характеристическое уравнение p2 + + k = 0. Поэтому p1,2=. Система находится на границе устойчивости. В ней существуют незатухающие колебания.

Анализ устойчивости с помощью частотных критериев

Основным недостатком рассмотренного алгебраического подхода к анализу устойчивости является то, что в сложных системах управления трудно установить связь между корнями знаменателя рk , k=1, 2, …, n, и параметрами элементарных звеньев, составляющих систему управления. Это приводит к трудностям коррекции неустойчивых систем. Для того, чтобы упростить анализ устойчивости, желательно проводить этот анализ по передаточной функции H(p) разомкнутой системы управления.

В 1932 г. американский ученый Найквист разработал эффективный метод анализа устойчивости усилителей с обратной связью. В 1938 г. советский ученый А.В. Михайлов обобщил метод Найквиста на замкнутые системы автоматического управления.

Критерий Найквиста основан на построении годографа передаточной функции H(jw) разомкнутой системы управления. Годографом передаточной функции H(j w ) называется кривая, прочерчиваемая концом вектора H(jw) =|H(jw)|ejj(w) на комплексной плоскости при измерении частоты w от 0 до бесконечности.

Наиболее просто формулируется критерий устойчивости Найквиста: замкнутая система управления устойчива, если годограф передаточной функции H(jw) разомкнутой системы не охватывает на комплексной плоскости точку c координатами (-1, j0). На рисунках показаны примеры годографов устойчивой (рис. 16,а) и неустойчивой (рис. 16,б) систем управления.

Если годограф проходит через точку -1, то говорят, что система находится на границе устойчивости. В этом случае на некоторой частоте H(jw0)= -1 и в системе могут существовать незатухающие колебания частоты w0. В неустойчивых системах уровень сигнала x(t) будет нарастать со временем. В устойчивых - уменьшаться.

Запас устойчивости

Еще одним достоинством рассматриваемого критерия является возможность определения запаса устойчивости системы управления. Запас устойчивости характеризуют двумя показателями: запасом устойчивости по усилению и запасом устойчивости по фазе .

Запас устойчивости по усилению определяется величиной g =1/|H(jw0)|, где w0 - частота, на которой (рис. 17,а). Запас устойчивости g показывает, во сколько раз должен измениться (увеличиться) модуль передаточной функции разомкнутой системы управления, чтобы замкнутая система оказалась на границе устойчивости. Требуемый запас устойчивости зависит от того, насколько в процессе работы может возрастать коэффициент передачи системы по сравнению с расчетным.

Запас устойчивости по фазе оценивается величиной угла , где частота wсp , называемая частотой среза , определяется условием |H(jwcp)|=1 (рис. 17, б).

Величина Dj показывает, насколько должна измениться фазовая характеристика разомкнутой системы управления, чтобы замкнутая система оказалась на границе устойчивости. Запас устойчивости по фазе обычно считается достаточным, если
|Dj| ³ 30o.

Анализ устойчивости с помощью логарифмических амплитудно-частотных характеристик

Во многих случаях разомкнутую систему управления можно представить в виде последовательного соединения n типовых звеньев с передаточными функциями . При этом передаточная функция разомкнутой системы определяется произведением . Логарифмическая амплитудно-частотная характеристика будет равна сумме ЛАХ отдельных звеньев:

.

Поскольку ЛАХ многих элементарных звеньев могут быть аппроксимированы отрезками прямых линий, то ЛАХ разомкнутой системы управления также будет представлена в виде отрезков прямых линий, имеющих наклоны к оси частот, кратные 20 децибелам на декаду.

Пример. Пусть передаточная функция разомкнутой системы имеет следующий вид

.

Такая система содержит два интегратора, форсирующее звено с передаточной функцией и апериодическое звено с передаточной функцией . Представим ЛАХ отдельных звеньев такой системы в виде графиков на рис. 18, а. Суммируя представленные графики, получим ЛАХ разомкнутой системы (рис. 18, б).

Как следует из приведенных рисунков, построение суммарной ЛАХ осуществляется достаточно просто. Необходимо лишь учитывать изменение наклона ЛАХ в точках и , соответствующих сопрягающим частотам форсирующего и апериодического звеньев.

Для проверки условий устойчивости замкнутой системы автоматического управления необходимо в таком же логарифмическом масштабе по оси частот построить фазочастотную характеристику . Однако опыт инженерных расчетов показывает, что замкнутая САУ, как правило, устойчива и обладает запасом устойчивости, если ЛАХ разомкнутой системы вблизи часто-

ты среза имеет наклон –20 дБ/дек. При этом запас устойчивости тем больше, чем больше протяженность этого участка ЛАХ. Обычно считают, что, протяженность участка с наклоном - 20 дБ/дек должна составлять не менее 1 декады. Существуют устойчивые САУ с наклоном ЛАХ большим, чем - 20 дБ/дек, но для таких систем, как правило, очень мал запас устойчивости.

Предположим, что исследуемая САУ имеет наклон около частоты среза больший, чем - 20 дБ/дек (рис. 19)

Учитывая, что при последовательном соединении звеньев САУ их ЛАХ суммируются, нужно включить в САУ такое звено, которое обеспечит устойчивость системы. В рассматриваемом случае таким звеном может быть звено с ЛАХ, показанной на рис. 20.

Действительно, после суммирования ЛАХ системы управления (рис. 19) и дополнительного звена получим ЛАХ, имеющую постоянный наклон - 20 дБ/дек на всех частотах, в том числе и на

частоте среза. В рассматриваемом примере передаточная функция дополнительного корректирующего звена Hф(jw) =1+jwTф, причем w1 = 1/Tф. Введение дополнительных звеньев для обеспечения устойчивости систем управления называется коррекцией САУ, а сами звенья – корректирующими.

В этом разделе были рассмотрены методы исследования одного из важнейших показателей качества систем управления - устойчивости линейных систем. Применение этих методов для анализа конкретных систем обычно осуществляется следующим образом. Вначале строят ЛАХ разомкнутой системы управления. Если система неустойчива, то подбирают и вводят в нее корректирующие звенья таким образом, чтобы наклон ЛАХ на частоте среза составлял - 20 дБ/дек и обеспечивался необходимый запас устойчивости. После этого обязательно исследуют устойчивость скорректированной системы с помощью критерия Найквиста-Михайлова и определяют точные значения запасов устойчивости по усилению и по фазе. При необходимости после этого изменяются параметры системы управления для обеспечения заданного запаса устойчивости.

PAGE \* MERGEFORMAT 14

Лекция №4

Устойчивость САУ

Свойство системы приходить в исходное состояние после снятия возмущения называется устойчивостью.

Определение.

Кривые 1 и 2 характеризуют устойчивую систему, кривые 3 и 4 характеризуют системы неустойчивые.ε

Системы 5 и 6 на границе устойчивости  5 - нейтральная система, 6 - колебательная граница устойчивости.

Пусть дифференциальное уравнение САУ в операторной форме имеет вид 

Тогда решение дифференциального уравнения (движение системы) состоит из двух частей  Вынужденное движение того же вида что и входное воздействие.

При отсутствии кратных корней где С i -постоянные интегрирования, определяемые из начальных условий,

 1 ,  2 …,  n – корни характеристического уравнения

Расположение корней характеристического

уравнения системы на комплексной плоскости

Корни характеристического уравнения не зависят ни от вида возмущения, ни от

начальных условий, а определяются только коэффициентами а 0 , а 1 , а 2 ,…,а n , то есть параметрами и структурой системы.

1-корень действительный, больше нуля;

2-корень действительный, меньше нуля;

3-корень равен нулю;

4-два нулевых корня;

5-два комплексных сопряженных корня, действительная часть которых

Положительна;

6-два комплексных сопряженных корня, действительная часть которых отрицательная;

7-два мнимых сопряженных корня.

Методы анализа устойчивости :

  1. Прямые (основаны на решении дифференциальных уравнений);
  2. Косвенные (критерии устойчивости).

Теоремы А.М. Ляпунова.

Теорема 1.

Теорема 2.

Примечания:

  1. Если среди корней характеристического уравнения имеется два и более нулевых корня, то система неустойчива.
  2. Если один корень нулевой, а все остальные находятся в левой полуплоскости, то система нейтральна.
  3. Если 2 корня мнимые сопряженные, а все остальные в левой полуплоскости, то система на колебательной границе устойчивости.

Критерии устойчивости САУ.

Критерий устойчивости - это правило, позволяющее выяснить устойчивость системы без вычисления корней характеристического уравнения.

В 1877г. Раус установил:

1. Критерий устойчивости Гурвица

Критерий разработан в 1895г.

Пусть определено характеристическое уравнение замкнутой системы: уравнение приводим к виду, чтобы a 0 >0.

Составим главный определитель Гурвица по следующему правилу:

по главной диагонали записываются коэффициенты уравнения, начиная со второго по последний, столбцы вверх от диагонали заполняются коэффициентами с возрастающими индексами, а столбцы вниз от диагонали - коэффициентами с убывающими индексами. В случае отсутствия в уравнении какого-либо коэффициента и вместо коэффициентов с индексами меньше 0 и больше n пишут нуль.

Выделим диагональные миноры или простейшие определители в главном определителе Гурвица:

Формулировка критерия.

Для систем выше второго порядка кроме положительности всех коэффициентов характеристического уравнения необходимо выполнение следующих неравенств:

  1. Для систем третьего порядка:
  2. Для систем четвертого порядка:
  3. Для систем пятого порядка:
  1. Для систем шестого порядка:

Пример. Дано характеристическое уравнение исследовать устойчивость системы по Гурвицу.

Для устойчивых систем необходимо и

2. Критерий Рауса

Критерий Рауса используется при исследовании устойчивости систем высокого порядка.

Формулировка критерия:

Таблица Рауса.

Алгоритм заполнения таблицы: в первой и второй строках записываются коэффициенты уравнения с четными и нечетными индексами; элементы остальных строк вычисляются по следующему правилу:

Достоинство критерия: можно исследовать устойчивость систем любого порядка.

2. Критерий устойчивости Найквиста

Принцип аргумента

В основе частотных методов лежит принцип аргумента.

Проведем анализ свойств многочлена вида:

Где  i - корни уравнения

На комплексной плоскости каждому корню соответствует вполне определенная точка. Геометрически каждый корень  i можно изобразить в виде вектора, проведенного из начала координат в точку  i : |  i | - длина вектора, arg  i - угол между вектором и положительным направлением оси абсцисс. Отобразим D(p) в пространство Фурье, тогда где j  -  i - элементарный вектор.

Концы элементарных векторов находятся на мнимой оси.

Модуль вектора, а аргумент (фаза)

Направление вращения вектора против часовой стрелки принимают за ПОЛОЖИТЕЛЬНОЕ. Тогда при изменении  от до каждый элементарный вектор (j  -  i ) повернется на угол +  , если  i лежит в левой полуплоскости.

Пусть D ( )=0 имеет m корней в правой полуплоскости и n - m корней в левой, тогда при возрастании от до изменение аргумента вектора D(j ) (угол поворота D(j ), равный сумме изменений аргументов элементарных векторов) будет

Принцип аргумента:

Критерий Найквиста базируется на частотных характеристиках разомкнутой цепи САУ, так как по виду частотных характеристик разомкнутой цепи можно судить об устойчивости замкнутой системы.

Критерий Найквиста нашел широкое применение в инженерной практике по следующим причинам:

  1. Устойчивость системы в замкнутом состоянии исследуют по частотной передаточной функции ее разомкнутой цепи, а эта функция, чаще всего состоит из простых сомножителей. Коэффициентами являются реальные параметры системы, что позволяет выбирать их из условий устойчивости.
  2. Для исследования устойчивости можно использовать экспериментально полученные частотные характеристики наиболее сложных элементов системы (объект регулирования, исполнительный орган), что повышает точность полученных результатов.
  3. Исследовать устойчивость можно по ЛЧХ, построение которых несложно.
  4. Удобно определять запасы устойчивости.

1. Система, устойчивая в разомкнутом состоянии

Пусть введем вспомогательную функцию заменим p  j  , тогда

Согласно принципа аргумента изменение аргумента D(j  ) и D з (j  ) при 0<  <  равно Тогда то есть годограф W 1 (j  ) не должен охватывать начало координат.

Для упрощения анализа и расчетов сместим начало радиуса-вектора из начала координат в точку (-1, j 0), а вместо вспомогательной функции W 1 (j  ) используем АФХ разомкнутой системы W (j  ).

Формулировка критерия №1

Примеры.

Отметим, что разность числа положительных и отрицательных переходов АФХ левее точки (-1, j 0) равна нулю.

2. Система, имеющая полюсы на мнимой оси в разомкнутом состоянии

Для анализа устойчивости системы АФХ дополняют окружностью бесконечно большого радиуса при  0 против часовой стрелки до положительной вещественной полуоси при нулевых полюсах, а в случае чисто мнимых корней - полуокружностью по часовой стрелке в точке разрыва непрерывности АФХ.

Формулировка критерия №2

  1. Система с неустойчивой разомкнутой цепью

Более общий случай - знаменатель передаточной функции разомкнутой системы содержит корни, лежащие в правой полуплоскости. Появление неустойчивости разомкнутой системы вызывается двумя причинами:

  1. Следствием наличия неустойчивых звеньев;
  2. Следствием потери устойчивости звеньев, охваченных положительной или отрицательной обратными связями.

X отя теоретически вся система в замкнутом состоянии может быть устойчивой при наличии неустойчивости по цепи местной обратной связи, практически такой случай является нежелательным и его надо избегать, стремясь использовать только устойчивые местные обратные связи. Это объясняется наличием нежелательных свойств, в частности появлением условной устойчивости, которая при имеющихся обычно в системе нелинейностях может в некоторых режимах привести к потере устойчивости и появлению автоколебаний. Поэтому, как правило, при расчете системы выбирают такие местные обратные связи, которые были бы устойчивыми при разомкнутой главной обратной связи .

Пусть характеристический многочлен D (p ) разомкнутой системы имеет m корней с положительной вещественной частью.

Тогда

Вспомогательная функция при замене p  j  согласно принципа аргумента для устойчивых замкнутых систем должна иметь следующее изменение аргумента при

Формулировка критерия №3

Формулировка Я.З. Цыпкина

Критерий Найквиста для ЛЧХ

Примечание: фазовая характеристика ЛЧХ астатических систем дополняется монотонным участком +  /2 при  0.

Пример 1.

Здесь m =0  система устойчива, но при уменьшении k система может быть неустойчива, поэтому такие системы называются условно-устойчивыми.

Пример 2.

20 lgk

1/ T 0

Здесь

При любых k система неустойчива. Такие системы называются структурно-неустойчивыми.

Пример 3.

АФХ охватывает точку с координатами (-1, j 0) 1/2 раза, следовательно замкнутая система устойчива.

Пример 4.

при  0 АФХ имеет разрыв, и поэтому ее нужно дополнить дугой бесконечно большого радиуса от отрицательной вещественной полуоси.

На участке от -1 до -  имеется один положительный переход и полтора отрицательных. Разность между положительными и отрицательными переходами равна -1/2, а для устойчивости замкнутой системы требуется +1/2, так как характеристический полином разомкнутой системы имеет один положительный корень - система неустойчива.

Абсолютно-устойчивой называют систему, которая сохраняет устойчивость при любом уменьшении коэффициента усиления разомкнутой цепи, иначе система условно- устойчивая.

Системы, которые можно сделать устойчивыми путём изменения их параметров, называются структурно-устойчивыми , иначе – структурно-неустойчивыми.

Запасы устойчивости

Для нормального функционирования всякая САР должна быть удалена от границы устойчивости и иметь достаточный запас устойчивости. Необходимость этого обусловлена следующими причинами:

  1. Уравнения элементов САР, как правило, идеализированы, при их составлении не учитывают второстепенные факторы;
  2. При линеаризации уравнений погрешности приближения дополнительно увеличиваются;
  3. Параметры элементов определяют с некоторой погрешностью;
  4. Параметры однотипных элементов имеют технологический разброс;
  5. При эксплуатации параметры элементов изменяются вследствие старения.

В практике инженерных расчетов наиболее широко используют определение запаса устойчивости на основе критерия НАЙКВИСТА, по удалению АФХ разомкнутой системы от критической точки с координатами (-1, j 0), что оценивают двумя показателями: запасом устойчивости по фазе и запасом устойчивости по модулю (по амплитуде) H .

Для того чтобы САР имела запасы устойчивости не менее  и H , АФХ ее разомкнутой цепи при удовлетворении критерия устойчивости не должна заходить в часть кольца, заштрихованного на рис. 1, где H определяется соотношением

Если устойчивость определяется по ЛЧХ условно-устойчивых систем, то для обеспечения запасов устойчивости не менее  и h необходимо, чтобы:

а) при h  L  - h фазо-частотная характеристика удовлетворяла неравенствам θ > -180  +  или θ < -180  -  , т.е. не заходила в заштрихованную область 1 на рис. 2;

б) при -180  +   θ  -180  -  амплитудно-частотная характеристика удовлетворяла неравенствам L < - h или L > h , т.е. не заходила в заштрихованные области 2" и 2"" на рис. 2.

Для абсолютно устойчивой системы запасы устойчивости  и h определяют так, как показано на рис. 3:

1. Запас по фазе

  1. Запас по модулю h =- L (ω -π ), где ω -π – частота, при которой θ=-180 ˚ .

Необходимые значения запасов устойчивости зависит от класса САР и требований к качеству регулирования. Ориентировочно должно быть  =30  60  и h =6  20дБ.

Минимально допустимые запасы устойчивости по амплитуде должны быть не менее 6дБ (то есть передаточный коэффициент разомкнутой системы в два раза меньше критического), а по фазе не менее 25  30  .

Устойчивость системы со звеном чистого запаздывания

Если АФХ разомкнутой системы проходит через точку (-1, j 0), то система на грани устойчивости.

Систему с чистым запаздыванием можно сделать устойчивой, если в схему включить безынерционное звено с передаточным коэффициентом, меньшим 1. Возможны и другие виды корректирующих устройств.

Структурно-устойчивые и структурно-неустойчивые системы

Один из способов изменения качества системы (в смысле устойчивости) – это изменить передаточный коэффициент разомкнутой системы.

При изменении k L ( ) поднимется либо опускается. Если k увеличивать, L ( ) поднимается и  ср будет возрастать, а система останется неустойчивой. Если k уменьшать, то систему можно сделать устойчивой. Это один из способов коррекции системы.

Системы, которые можно сделать устойчивыми путем изменения параметров системы, называются СТРУКТУРНО-УСТОЙЧИВЫМИ.

Для этих систем есть критический передаточный коэффициент разомкнутой системы. K крит. – это такой передаточный коэффициент, когда система на грани устойчивости.

Существуют системы СТРУКТУРНО-НЕУСТОЙЧИВЫЕ – это такие системы, которые невозможно сделать устойчивыми изменением параметров системы, а требуется для устойчивости изменять структуру системы.

Пример.

Рассмотрим три случая:

  1. Пусть

Тогда

Проверим работу системы на устойчивость.

Δ = а 3 Δ 2 >0.

Для определения k рс.кр. приравняем нулю  2 .

Тогда

При при

Рассматриваемая система СТРУКТУРНО-УСТОЙЧИВАЯ, так как ее можно стабилизировать путем изменения параметров звеньев.

  1. Пусть и те же, что в первом случае.

Теперь Статической ошибки по каналу управления нет.

Условия устойчивости по Гурвицу:

Пусть  2 =0, тогда если то система неустойчивая.

Данная система с астатизмом 1-го порядка СТРУКТУРНО-УСТОЙЧИВАЯ.

  1. Пусть

Всегда система неустойчива. Эта система СТРУКТУРНО-НЕУСТОЙЧИВАЯ.

ЛЕКЦИЯ 7.

На предыдущих лекциях исследовались установившиеся процессы в САУ. Сейчас мы переходим к рассмотрению переходных процессов. Начнем их рассматривать с понятия устойчивости.

Любая система должна быть прежде всего работоспособной. Это значит, что она должна нормально функционировать при действии на нее различных внешних возмущений. Иными словами, система должна работать устойчиво.

Устойчивость – это свойство системы возвращаться в исходный или близкий к нему установившийся режим после всякого выхода из него в результате какого-либо воздействия.

На рис. 7.1 показаны типичные кривые переходных процессов в неустойчивой (рис. 7.1, а) и устойчивой (рис. 7.1, б) системах. Если система неустойчива , то достаточно любого толчка, чтобы в ней начался расходящийся процесс ухода из исходного установившегося состояния. Этот процесс может быть апериодическим (кривая 1 на рис. 7.1, а) или колебательным (кривая 2 на рис. 7.1, а).

Апериодический расходящийся процесс может, например, возникнуть в САУ, если в ее управляющем устройстве ошибочно переключить полярность воздействия на объект, в результате чего УУ будет осуществлять не отрицательную, а положительную обратную связь вокруг объекта. При этом УУ будет не устранять отклонение у , а действовать в обратном направлении, вызывая лавинообразное его изменение.

Колебательный расходящийся процесс может наступить, например, при неограниченном увеличении коэффициента передачи системы. Вследствие чего УУ станет излишне энергично воздействовать на объект, стремясь ликвидировать первоначально возникшие отклонения у . В этом случае при каждом очередном возврате у к нулю под действием управляющего устройства кривая у будет пересекать ось абсцисс все с большей скоростью и процесс в целом будет расходящимся.

В случае устойчивой системы (рис. 7.1, б) переходный процесс, вызванный каким-либо воздействием, со временем затухает апериодически (кривая 1) или колебательно (кривая 2), и система вновь возвращается в установившееся состояние.

Таким образом, устойчивую систему можно определить также как систему, переходные процессы в которой являются затухающими.

Приведенное понятие устойчивости определяет устойчивость установившегося режима системы. Однако система может работать в условиях непрерывно изменяющихся воздействий, когда установившийся режим вообще отсутствует. С учетом таких условий работы можно дать следующее, более общее определение устойчивости: система устойчива, если ее выходная величина остается ограниченной в условиях воздействия на систему ограниченных по величине возмущений.

Нетрудно показать, что если переходный процесс в системе является затухающим, то система будет удовлетворять и последнему определению.


Линейная система автоматического управления называется устойчивой, если ее выходная координата у(t) остается ограниченной при любых ограниченных по абсолютной величине входных воздействиях х(t) и f(t). Устойчивость линейной системы определяется ее характеристиками и не зависит от действующих воздействий.

Таким образом, для определения устойчивости линейной системы требуется найти изменение ее управляемой величины. Структурная схема линейной системы приведена на рис.7.2, где W(s) - передаточная функция разомкнутой системы, которая в общем виде, как было определено на второй лекции, имеет вид:

Рис. 7.2. Структурная схема линейной системы

Передаточная функция замкнутой системы, изображенной на рис. 7.2, определяется по следующей формуле

Подставив (7.1) в (7.2) и освободившись от дробей в числителе и знаменателе передаточной функции замкнутой системы, можно представить ее так:

Процессы в системе (рис.7.2), как следует из (7.3), описываются дифференциальным уравнением вида

Решение линейного неоднородного уравнения (7.4) в общем виде состоит, как известно, из двух составляющих:

Здесь - частное решение неоднородного уравнения (7.5) с правой частью, описывающее вынужденный режим системы, устанавливающийся по окончании переходного процесса; - общее решение однородного уравнения

описывающее переходный процесс в системе.

Как показано выше, система будет устойчива, если переходные процессы , вызванные любыми возмущениями, будут затухать, т.е. если с течением времени будет стремиться к нулю.

Решение однородного дифференциального уравнения, как известно, имеет вид:

Здесь С i – постоянные интегрирования, определяющиеся начальными условиями и возмущением; s i – корни характеристического уравнения

где полином , называемый характеристическим, есть левая часть уравнения (7.4) динамики системы.

Из теории комплексных переменных известно, что если вещественная часть корня s i отрицательна, то слагаемое стремится к нулю при t ® ¥.

Таким образом, для устойчивости системы необходимо и достаточно , чтобы все корни характеристического уравнения имели отрицательные вещественные части.

Если изобразить корни характеристического уравнения системы точками на комплексной плоскости (рис. 7.3), то найденное выше общее условие устойчивости линейной системы можно сформулировать еще так: условием устойчивости системы является расположение всех корней характеристического уравнения, т.е. полюсов передаточной функции системы, в левой комплексной полуплоскости или, короче, все они должны быть левыми .

Рис. 7.3. Корни характеристического уравнения на комплексной плоскости.

Наличие корня на мнимой оси означает, что система находится на границе устойчивости. При этом возможны два случая:

Корень в начале координат;

Пара мнимых корней.

Нулевой корень появляется, когда свободный член характеристического уравнения равен нулю. В этом случае границу устойчивости называют апериодической ; система устойчива не относительно выходного сигнала, а относительно его производной: выходной сигнал в установившемся режиме имеет произвольное значение. Такие системы называют нейтрально устойчивыми .

В том случае, когда характеристическое уравнение имеет пару мнимых корней, границу устойчивости называют колебательной , при этом в переходном процессе будут незатухающие гармонические колебания.

Если хотя бы один из корней имеет положительную вещественную часть, т.е. лежит в правой полуплоскости комплексной плоскости корней характеристического уравнения, то система неустойчивая.

Для суждения об устойчивости системы практически не требуется находить корней ее характеристического уравнения в связи с тем, что разработаны косвенные признаки, по которым можно судить о знаках действительных частей этих корней и тем самым об устойчивости системы, не решая самого характеристического уравнения. Эти косвенные признаки называются критериями устойчивости .

Существуют три основных критерия устойчивости: критерий Рауса-Гурвица, критерий Михайлова и критерий Найквиста. Рассмотрим их последовательно.

Устойчивостью называют свойство системы самостоятельно возвращаться в состояние равновесия после того, как внешнее входное воздействия вывело ее из состояния равновесия. Равновесием называют состояние системы, когда управляемая величина y (t ) постоянна, и все ее производные равны нулю. Исследование устойчивости является одной из основных задач в теории автоматического управления.

Как уже отмечалось, процесс управления определяется переходным процессом: законом изменения y (t ) после изменения x (t ). Переходной процесс САУ можно получить решением дифференциального уравнения САУ (1). Это решение может быть представлено суммой двух составляющих, вынужденной у в (t ) и переходной y п (t ):

y (t ) = у в (t ) + y п (t ),

где y в (t ) определяется свойствами системы и видом входного воздействия. САУ будет устойчивой, если с течением времени переходная составляющая будет стремиться к нулю:

Однозначно судить об устойчивости системы можно по виду ее переходного процесса: затухающий переходной процесс (сходящийся к некоторой постоянной) соответствует устойчивой системе, расходящийся (стремящийся в бесконечность) – неустойчивой.

ПРИМЕРЫ переходных процессов неустойчивых САУ.

При исследовании устойчивости САУ решают следующие задачи:

Определение, является ли САУ устойчивой при заданных параметрах;

Определение допустимых изменений параметров САУ без нарушения устойчивости;

Поиск параметров и/или структуры САУ, при которых она может стать устойчивой.

Теорема Ляпунова

Необходимое и достаточное условие устойчивости линейных САУ формулируется в теореме Ляпунова :

Если характеристическое уравнение САУ имеет все корни с отрицательной действительной частью, то система устойчива;

Если хотя бы один корень имеет положительную действительную часть, то САУ неустойчива.

Характеристическое уравнение САУ записывается по виду дифференциального уравнения или передаточной функции системы. Так, из уравнения (1) после преобразования Лапласа мы имеем (см. вывод (2)):

Полином в левой части равенства вида:

называется характеристическим . Приравнивание нулю характеристического полинома дает характеристическое уравнение системы или звена:

Корни характеристического уравнения, количество которых соответствует порядку характеристического уравнения САУ, могут быть действительными, комплексными и чисто мнимыми. Их можно представить в виде точек на комплексной плоскости величины р . Согласно теореме, для устойчивости системы необходимо и достаточно, чтобы все корни лежали в левой полуплоскости. Примеродного из возможных распределений в комплексной плоскости корней характеристического уравнения устойчивой САУ 5-ого порядка показан на рис. 75.

В случае, если среди корней характеристического уравнения имеется нулевой корень или пара сопряженных чисто мнимых корней, расположенных на мнимой оси, система оказывается на границе устойчивости. Примерывозможных распределений в комплексной плоскости корней характеристического уравнения САУ 5-ого порядка, находящейся на границе устойчивости , приведены на рис. 77.

Системы, у которых имеется одна пара мнимых корней, могут совершать незатухающие колебания (автоколебания). Такие системы практически неработоспособны .

Рис. 77

Рассмотрим примеры оценки устойчивости по теореме Ляпунова и связь результатов оценки с переходной характеристикой САУ.

Пусть САУ 3-го порядка имеет характеристическое уравнение вида:

На рис. 78 показан результат решения этого уравнения, полученный с использованием математического пакета Mathcad. Множество корней уравнения представлено в круглых скобках. Как видно, один из корней уравнения оказался отрицательным действительным числом –3,55, а два других – комплексными сопряженными числами с отрицательной действительной частью –0,525: (–0,525 – 0,657j ) и (–0,525 + 0,657j ).

Аналогично рассмотрим другую САУ 3-го порядка, с характеристическим уравнением вида:

На рис. 80 показан результат решения этого уравнения, полученный с использованием математического пакета Mathcad. Множество корней уравнения представлено в круглых скобках. Как видно, один из корней уравнения оказался отрицательным действительным числом –7,2, а два других – комплексными сопряженными числами с положительной действительной частью 1,31: (1,31 + 4,64j ) и (1,31 – 4,64j ), т.е. распределение корней в комплексной плоскости свидетельствует по теореме Ляпунова о неустойчивости САУ.

Критерии устойчивости САУ

Для оценки устойчивости необходимо оценить расположение корней характеристического уравнения системы относительно координатных осей комплексной плоскости. Эту оценку можно осуществить непосредственным решением характеристического уравнения. Но для определения устойчивости не обязательно знать значения корней характеристического уравнения, достаточно проверить, являются ли действительные части всех корней отрицательными.

Правила, позволяющие исследовать устойчивость системы без непосредственного нахождения корней характеристического уравнения, называются критериями устойчивости .

На ранней стадии развития теории управления актуальной была задача определения устойчивости полинома без вычисления его корней, т.к. характеристические уравнения высоких порядков трудно было решать «в ручную». Сейчас легко найти корни характеристического полинома с помощью компьютерных программ, однако такой подход не позволяет исследовать устойчивость теоретически, например, определять границы областей устойчивости отдельных параметров САУ.

С помощью критериев устойчивости не только устанавливается факт устойчивости систем, но и оценивается влияние тех или иных параметров и структурных изменений в системе на устойчивость. Математически все формы критериев устойчивости эквивалентны, т.к. они определяют условия, при которых корни характеристического уравнения попадают в левую полуплоскость комплексной системы координат .

6.2.1. Критерий Гурвица

Критерий Гурвица относится к алгебраическим критериям устойчивости, которые позволяют установить устойчива ли САУ или нет по результатам алгебраических действий над коэффициентами характеристического уравнения.

Бóльшая часть реальных САУ являются замкнутыми, т.е. имеют общую единичную обратную связь и, соответственно, передаточную функцию вида:

,

где W раз (р ) – передаточная функция разомкнутой САУ (без учета общей обратной связи).

Рассмотрим вывод характеристического уравнения замкнутой САУ, если дана передаточная функция соответствующей ей разомкнутой САУ. Согласно (17) характеристическое уравнение САУ получается приравниванием к нулю знаменателя ее передаточной функции, следовательно, для замкнутой системы запишем:

Однако, передаточная функция разомкнутой системы, согласно (2), имеет вид:

следовательно, характеристическое уравнение замкнутой системы может быть записано как:

Дробь равна нулю когда ее числитель равен нулю, следовательно, характеристическое уравнение замкнутой системы можно записать как сумму полиномов числителя и знаменателя передаточной функции разомкнутой системы, прировняв полученное выражение к нулю:

(18)

Важно! Для применения критерия Гурвица используется специальная форма записи характеристического уравнения, отличающаяся от (16) обратной нумерацией коэффициентов полинома:

Критерий Гурвица использует матрицу коэффициентов характеристического уравнения размером n ´n , составленную следующим образом:

По главной диагонали выписываются все коэффициенты характеристического уравнения, начиная с a 1 и заканчивая a n ;

Каждая строка дополняется коэффициентами с возрастающими индексами слева на право так, чтобы чередовались строки с четными и нечетными индексами;

В случае отсутствия коэффициента, а также, если индекс меньше 0 или больше n , на его месте пишется 0.

В результате получается матрица, первая строка которой содержит коэффициенты уравнения (19) a 1 , a 3 , a 5 ,… (все с нечетными номерами) и нулями на месте отсутствующих элементов, вторая строка – коэффициенты a 0 , a 2 , a 4 ,… (все с четными номерами) и нулями на месте отсутствующих элементов. Третья строка получается сдвигом первой строки на одну позицию вправо, четвертая – сдвигом второй строки на одну позицию вправо и т.д. Например, для САУ 5-го порядка (n = 5) эта матрица имеет вид:

Критерий Гурвица определяет необходимое и достаточное условие устойчивости САУ следующим образом: все корни характеристического уравнения САУ имеют отрицательные действительные части, если при a 0 > 0 все n определителей Гурвица матрицы коэффициентов положительны .

Определители Гурвица вычисляются следующим образом:

При условии положительности всех коэффициентов характеристического уравнения достаточно проверить только n – 1первых определителей Гурвица, не вычисляя определитель для полной матрицы. При этом условии частные случаи критерия Гурвица для систем низких порядков получают, раскрывая определители матрицы коэффициентов. Так, в результате раскрытия определителей, для САУ первого и второго порядков необходимым и достаточным условием устойчивости является собственно положительность всех коэффициентов характеристического уравнения. Для САУ 3-го порядка – положительность всех коэффициентов и условие вида:

Определим с помощью критерия Гурвица, при каких значениях коэффициента статического преобразования регулятора k рассматриваемая система будет устойчивой. Запишем передаточную функцию разомкнутой САУ:

С использованием (18) запишем характеристическое уравнение замкнутой САУ:

Для того уравнения, согласно форме (19), коэффициенты, соответственно равны:

При положительности всех коэффициентов этого уравнения 3-го порядка необходимым условием устойчивости также является выполнение условия (20):

a 1 ×a 2 – a 0 ×a 3 > 0,

Т.о., рассматриваемая САУ будет устойчива, если значение коэффициента статического преобразования k удовлетворяет условию :

Рассмотрим примеры оценки устойчивости по критерию Гурвица исследованных ранее по теореме Ляпунова систем 3-го порядка (см. рис. 78 и рис. 80). Матрица коэффициентов Гурвица для САУ 3-го порядка имеет общий вид:

,

т.е. матрицы Гурвица для рассматриваемых САУ равны, соответственно:

и
.

Характеристические уравнения обеих САУ удовлетворяют критерию положительности всех коэффициентов, поэтому для оценки устойчивости по критерию Гурвица достаточно вычислить и проверить на положительность n – 1первых определителей Гурвица, т.е. для 3-го порядка – второй определитель. Результаты вычисления вторых определителей матрицы Гурвица для рассматриваемых систем (см. рис. 78 и рис. 80), полученные с использованием Mathcad, показаны на рис. 83–а и рис. 83–б соответственно. Как видно, результаты оценки устойчивости по Гурвицу совпадают с ранее полученными оценками по Ляпунову и результатами построения переходных характеристик рассматриваемых САУ (см. рис. 79 и рис. 81 соответственно) – положительный определитель соответствует устойчивой САУ, а отрицательный – неустойчивой.

Годограф по формуле (21) рассчитывают, изменяя частоту w от 0 до +¥, и строят в комплексной плоскости.

Критерий Михайлова определяет необходимое и достаточное условие устойчивости САУ следующим образом: САУ является устойчивой, если при изменении частоты от 0 до + ¥ годограф вектора Михайлова А(j w) начинается на положительной части действительной оси и, не обращаясь в ноль, поворачиваясь против часовой стрелки, проходит последовательно n квадрантов комплексной плоскости, где n – порядок характеристического полинома САУ.

У устойчивых систем годограф Михайлова имеет плавную спиралевидную форму и при w = 0 отсекает на действительной оси в положительном направлении отрезок, равный свободному члену характеристического уравнения а 0 .

По виду годографа Михайлова можно определить и граничное состояние устойчивости САУ: в случае границы устойчивости первого типа, т.е. наличия у характеристического уравнения САУ нулевого корня (см. рис. 77) отсутствует свободный член характеристического уравнения а 0 = 0 и годограф начинается из начала координат. При границе устойчивости второго типа, т.е. наличия у характеристического уравнения САУ пары чисто мнимых корней (см. рис. 77), годограф проходит через начало координат (обращается в ноль) при некотором ненулевом значении w, причем это значение и есть частота незатухающих колебаний системы .

Рассмотрим примеры оценки устойчивости по критерию Михайлова исследованных ранее по теореме Ляпунова систем 3-го порядка (см. рис. 78 и рис. 80). Формулы для расчета годографов Михайлова этих систем имеют вид, соответственно:

Годограф Михайлова для первой САУ показан на рис. 84. Как видно, его форма удовлетворяет всем условиям критерия:

Годограф начинается на положительной части действительной оси (отсекая при w = 0 на действительной оси отрезок, равный свободному члену характеристического уравнения а 0 = 3);

Не обращается в ноль;

С ростом значения частоты w, поворачиваясь против часовой стрелки, проходит последовательно первый, второй квадрант и в третьем квадранте, при w ® ¥, уходит в бесконечность.

Следует отметить, что для систем с высоким порядком характеристического уравнения (n = 5 и более) отсчет квадрантов при проверке условий критерия Михайлова после четвертого продолжается против часовой стрелки в том же порядке. Т.е., например, у устойчивой САУ 5-го порядка годограф должен последовательно проходить четыре квадранта, возвращаться в первый (для годографа – по порядку пятый) и в нем уходить в бесконечность. Пример годографа Михайлова для устойчивой САУ 5-го порядка с формулой для расчета годографа вида:

показан на рис. 86. Для удобства анализа начальный участок годографа, полученные при малых значениях частоты w, показан отдельным фрагментом. Видно, что годограф при w = 0 начинается на положительной части действительной оси и, последовательно, против часовой стрелки, проходя пять квадрантов, в пятом уходит в бесконечность.

Критерий Найквиста для амплитудно–фазовой характеристики (АФХ) формулируется следующим образом: замкнутая система будет устойчивой, если АФХ соответствующей разомкнутой системы при изменении частоты от 0 до не охватывает точку с координатами [–1, j0].

Рассмотрим произвольную разомкнутую САУ, не содержащую интегрирующих звеньев. В этом случае значение АФХ для частоты w = 0 равно коэффициенту статического преобразования САУ:

W (j w) = W (j 0) = k .

При этом, если степень числителя передаточной функции меньше степени знаменателя, то график АФХ, начинаясь в точке с координатами (k , j 0) при изменения частоты от 0 до ¥ стремится к началу координат. На рис. 88–а показана АФХ устойчивой САУ – график не охватывает точку с координатами [–1, j 0], а на рис. 88–б неустойчивой (график точку охватывает).

Если в составе САУ есть интегрирующие звенья, то АФХ при w = 0 обращается в бесконечность, т.е. график АФХ в этом случае начинается не на действительной оси, а приходит из бесконечности. В этом случае для оценки устойчивости по критерию Найквиста в контур включают не только кривую графика АФХ, но и часть окружности бесконечного радиуса, проводимой от действительной оси по часовой стрелке. Пример устойчивой САУ с АФХ такого вида показан на рис. 90–а , неустойчивой – на рис. 90–б .

Рис. 90
а)
б)

Рассмотрим пример оценки устойчивости по критерию Найквиста для АФХ на примере замкнутой САУ, которой соответствует разомкнутая система с передаточной функцией вида:

Запишем по заданной W раз (p ) формулу расчета АФХ:

и, изменяя частоту w от 0 до +¥, построим график АФХ разомкнутой САУ с использованием математического пакета Mathcad (рис. 91). Для удобства анализа участок АФХ в области точки [–1, j 0], полученный для больших значений частоты w, показан на рис. 91 отдельным фрагментом. По фрагменту хорошо видно, что график охватывает точку [–1, j 0], следовательно замкнутая САУ является неустойчивой .

Рис. 91

6.2.4. Критерий Найквиста для ЛАЧХ и ЛФЧХ

Критерий Найквиста для логарифмической амплитудно-частотной и фазочастотной характеристик формулируется следующим образом: замкнутая система устойчива, если для характеристик соответствующей ей разомкнутой системы выполняются два условия:

- при частоте равной частоте среза САУ w с модуль фазочастотной характеристики меньше 180 градусов: < 180°;

- при частоте равной w p значение ЛАЧХ меньше нуля: L (w p) < 0.

Как следует из формулировки критерия, для проверки его условий по характеристикам разомкнутой САУ первоначально необходимо определить две частоты: частоту среза w с и частоту w p . После этого для найденных значений частот следует проверить выполнимость обоих условий критерия.

Частотой среза САУ называется частота, при которой ЛАЧХ системы пересекает ось частот, то есть L (w с ) = 0. Эта частота также называется частотой единичного усиления САУ, так как сигнал этой частоты на выходе САУ имеет ту же амплитуду, что и на входе: А вых = А вх . Для этого случая справедливо:

Важно! Не путайте понятия частоты среза отдельных типовых звеньев САУ и всей системы в целом. Определение частот среза типовых звеньев рассмотрено в графе «Примечания» Приложения 1.

Частотой w p САУ называется частота, при которой ФЧХ САУ равняется 180° со знаком «плюс» или со знаком «минус». Если ФЧХ несколько раз пересекает ординату ±180, то выполнение условия проверяется для крайней правой точки.

Важно! Рассматриваемые характеристики – частоты среза w с и частота w p – имеются не у всякой САУ. Если ЛАЧХ системы вообще не пересекает ось частот, то есть L (w) ¹ 0 ни при каких значениях w, то у такой системы нет частоты среза. Аналогично, если ФЧХ системы ни при каких значениях частоты не принимает значение ±180°, то данная САУ не характеризуется параметром w p . В этих случаях для оценки устойчивости следует выбрать другие критерии.

На рис. 92–а показано, как по графикам ЛАЧХ и ЛФЧХ разомкнутой САУ определить частоты w с и w p .

Рис. 92
а)
б)
ПРИМЕРЫ: 1) ЛАЧХ САУ без частоты среза w с; 2) ЛФЧХ САУ без частоты w p .

Проверим выполнимость условий критерия Найквиста для характеристик разомкнутой САУ, показанных на рис. 92–а . Определим графически величины L (w p) и j(w с ) как показано на рис. 92–б. Как видно, L (w p) < 0, а < 180°, т.е. оба условия критерия Найквиста выполняются, следовательно, замкнутая САУ, соответствующая рассматриваемой разомкнутой, является устойчивой . Из рис. 92–б также можно сделать вывод о том, что для устойчивости САУ по критерию Найквиста достаточно, чтобы выполнялось условие w с < w p .

Для характеристик разомкнутой САУ на рис. 93–а L (w p) > 0, а > 180°, т.е. оба условия критерия Найквиста не выполняются, следовательно, замкнутая САУ, соответствующая рассматриваемой разомкнутой, является неустойчивой . Из рис. 93–а также можно сделать вывод о том, что для неустойчивости САУ по критерию Найквиста достаточно, чтобы выполнялось условие w с > w p .

Рис. 93
а)
б)

Для характеристик разомкнутой САУ, которой соответствует замкнутая система, находящаяся на границе устойчивости , L (w p) = 0 и = 180°, w с = w p (см. рис. 93–б ). У такой системы для сигнала с частотой w с , т.е. с частотой единичного усиления, фазовый сдвиг выходного сигнала относительно входного составляет –180°. Это говорит о том, что после прохождения САУ величина сигнала меняет знак, сохраняя абсолютную величину (энергию), то есть устанавливаются незатухающие колебания. АФХ такой САУ показана на рис. 89 .

Рассмотрим пример оценки устойчивости по критерию Найквиста для ЛАЧХ и ЛФЧХ на примере замкнутой САУ, которой соответствует разомкнутая система с передаточной функцией вида:

Графики ЛАЧХ и ЛФЧХ разомкнутой САУ, построенные с использованием математического пакета Mathcad по формулам (11) и (12), приведены на рис. 94. Как видно по рисунку, ЛАЧХ равна нулю при w с » 13,5 с -1 . ЛФЧХ на частоте w p » 5,7 с -1 меняет знак – после того, как j(w) достигает значения –180° (радиус-вектор, поворачиваясь по часовой стрелки, переходит в верхнюю полуплоскость) отсчет фазового сдвига продолжается в области положительных значений. При этом из двух условий критерия Найквиста формально нарушается только второе: значение ЛАЧХ на частоте среза не является отрицательным (L (w p) » 18 > 0). Первое условие ( < 180°) формально выполняется: » 130° < 180°. Однако следует понимать, что опережение по фазе в 130° соответствует, при отсчете по часовой стрелке без смены знака, отставанию на величину:

j(w с ) = –360° + 130° = –230°,

следовательно, замкнутая САУ неустойчива. К такому же выводу можно придти, сравнив величины w с и w p: w с > w p . Оценка устойчивости этой САУ по критерию Найквиста для АФХ, выполненная в конце раздела 6.2.3, также показала отсутствие устойчивости.

Выполним проверку оценки устойчивости по критериям Найквиста с использованием теоремы Ляпунова. По заданной запишем с использованием формулы (18) характеристическое уравнение замкнутой САУ:

Решение характеристического уравнения замкнутой САУ, полученное с использованием математического пакета Mathcad, имеет вид:

Множество корней уравнения представлено в круглых скобках. Как видно, один из корней уравнения оказался отрицательным действительным числом –17,74, а два других – комплексными сопряженными числами с положительной действительной частью 3,657. Эти корни равны, соответственно, (3,657+ 12,22j ) и (3,657– 12,22j ). Т.о. по теореме Ляпунова замкнутая САУ неустойчива , что согласуется с результатами оценки устойчивости, полученными с применением обоих критериев Найквиста.

Рис. 94

Запасы устойчивости САУ

Технические характеристики устройств, входящих в состав САУ, меняются в процессе эксплуатации, и, следовательно, со временем изменяются и постоянные передаточной функции САУ. Следователь, недостаточно спроектировать просто устойчивую систему, нужно, чтобы она сохраняла устойчивость при некоторых изменениях параметров САУ в сравнении с расчетными, т.е. обладала запасами устойчивости . Запас определяет удаление системы от границы устойчивости.

Запасом устойчивости по амплитуде DL называется величина в децибелах, на которую нужно сместить вверх ЛАЧХ разомкнутой САУ так, чтобы привести соответствующую ей устойчивую замкнутую систему к границе устойчивости. На рис. 95 показано смещение вверх ЛАЧХ устойчивой САУ, исходные характеристики которой были рассмотрены в примере оценки устойчивости по критерию Найквиста (см. рис. 92–б ).

где А(w p) < 1 – модуль АФХ на частоте w p .

Зная DL , можно определить величину коэффициента статического преобразования разомкнутой САУ, при которой соответствующая ей замкнутая система окажется на границе устойчивости:

;

, (23)

где k

Рассмотрим пример определения граничного значения коэффициента статического преобразования для разомкнутой САУ с передаточной функцией вида:

ЛАЧХ и ЛФЧХ этой САУ показаны на рис. 96. По графикам характеристик видно, что частота среза САУ составляет w с » 50 с -1 , а ЛФЧХ достигает значения –180° на частоте w p » 100 с -1 и после этого меняет знак. Запас устойчивости по амплитуде для этой САУ равен
, следовательно, по формуле (23):

.

При изменении коэффициента статического преобразования САУ до значения, равного k гр , ЛФЧХ САУ не изменится, а ЛАЧХ сместится вверх (см. рис. 96). Как видно, при найденном значении k гр = 425,975 частота среза разомкнутой САУ w с 1 становиться равной 100 с -1 , т.е. w с 1 = w p . А значит, в соответствии с критерием Найквиста для ЛАЧХ и ЛФЧХ, соответствующая рассматриваемой разомкнутой САУ замкнутая система действительно окажется на границе устойчивости.

На рис. 97 показано смещение вниз ЛФЧХ разомкнутой САУ, исходные характеристики которой были рассмотрены в примере оценки устойчивости по критерию Найквиста (см. рис. 92–б ). Как видно, смещение исходной ЛФЧХ параллельно самой себе вниз на величину Dj(w с ) приводит к смещению частоты w p разомкнутой САУ влево : для новой ЛФЧХ, показанной пунктиром, значение этой частоты w p1 = w с , что, по критерию Найквиста для ЛАЧХ и ЛФЧХ, свидетельствует о нахождении замкнутой системы на границе устойчивости. Из рис. 97 следует, что величину Dj(w с ) можно определить как:

Напомним, что w с это частота единичного усиления: сигнал с такой частотой на выходе САУ имеет ту же величину амплитуды, что и на входе. Следовательно, длина радиус-вектора, проведенного в точку АФХ, которая соответствует w с , равна 1. Эту точку можно найти на графике АФХ по пересечению с окружностью единичного радиуса (см. рис. 98).

Из рис. 98 хорошо видно, что если график АФХ разомкнутой САУ повернуть на величину угла, равную Dj(w с ), то график будет проходить через точку [–1, j 0], что приведет замкнутую систему к границе устойчивости по критерию Найквиста для АФХ.

Для той же АФХ рассмотрим определение запаса устойчивости по амплитуде. Частоте w p соответствует фазовый сдвиг ±180°, следовательно, точку АФХ, соответствующую этой частоте, можно найти по пересечению графика с действительной осью (рис. 99). Модуль АФХ, определяющий коэффициент ослабления амплитуды сигнала с такой частотой на выходе САУ, равен длине радиус-вектора, проведенного из начала координат в соответствующую точку АФХ. Для АФХ на рис. 99 эта величина равна А(w p), и по ней с использованием формулы (22) можно рассчитать DL .

где k – коэффициент статического преобразования исходной разомкнутой САУ .

Рассмотрим пример определения граничного значения коэффициента статического преобразования по АФХ разомкнутой САУ, для которой ранее расчет k гр был выполнен по логарифмическим характеристикам (см. начиная с формулы (23) и до рис. 96). АФХ этой САУ с исходным значением k = 107 показана на рис. 100. Для удобства анализа графика в области точки [–1, j 0] его фрагмент показан отдельно. Как видно, у САУ с исходным значением k модуль АФХ А(w p) » 0,25, следовательно, по формуле (25):

Найденное значение k гр = 428 с удовлетворительной точностью совпадает с результатом расчета по ЛАЧХ (k гр = 425,975). Погрешности в расчетах обусловлены приближенным определением по графикам DL и А(w p).

Рис. 100

Как видно из рис. 100, при изменении коэффициента статического преобразования САУ до значения, равного k гр = 428, АФХ САУ пройдет через точку с координатами [–1, j 0], а значит, в соответствии с критерием Найквиста для АФХ, соответствующая рассматриваемой разомкнутой САУ замкнутая система действительно окажется на границе устойчивости.

Запасы устойчивости САУ по амплитуде DL и фазе Dj(w с ), наряду с показателями, определяемыми по переходной характеристике (см. раздел 2.3.2.), являются основными показателями качества управления.


Литература

1. Анхимюк, В.Л. Теория автоматического управления. / В.Л. Анхимюк, О.Ф. Опейко, Н.Н. Михеев; под ред. В.Л. Анхимюк. – Мн.: Дизайн ПРО, 2000. – 352 с.

2. Бесекерский, В.А. Теория систем автоматического регулирования / В.А. Бесекерский, В.П. Попов. – М.: Наука, 1975. – 766с.

3. Андрющенко, В.А. Теория систем автоматического управления / В.А. Андрющенко. – Л.: ЛГУ, 1990. – 256 с.

4. Клюев, А.С. Проектирование систем автоматизации технологических процессов: справочное пособие / А.С. Клюев, Б.В. Глазов и др. – М.: Энергоатомиздат, 1990. – 464 с.

5. Клюев, А.С. Техника чтения схем автоматического управления и технологического контроля / А.С. Клюев, Б.В. Глазов и др. – М.: Энергоатомиздат, 1991. – 432 с.

6. Федоров, Ю.Н. Справочник инженера по АСУ ТП: проектирование и разработка: учеб.-практ. пособие / Ю.Н. Федоров. – М.: Инфра-Инженерия, 2008. – 928 с.

7. Поляков, К.Ю. Теория автоматического управления для «чайников». К.Ю. Поляков // Преподавание, наука и жизнь [Электронный ресурс]. – 2009. – Режим доступа: http://kpolyakov.narod.ru/uni/teapot.htm. – Дата доступа: 01.06.2011.

8. Тихонов, А.И. Теория автоматического управления: курс лекций / А.И. Тихонов. – Иваново: ИГЭУ, 2002. – 188 с.

9. Яковлев, А.В. Система стабилизации частоты вращения электродвигателя: лабораторная работа по курсу «Технические средства САУ» /А.В. Яковлев. – М.: МГТУ им. Н.Э. Баумана, 2007. – 24 с.

10. Зайцев, Г.Ф. Теория автоматического управления и регулирования / Г.Ф. Зайцев. – К.: Выща шк., 1989. – 431 с.

11. Туманов, М.П. Теория управления. Теория линейных систем автоматического управления: учебное пособие / М.П. Туманов. – М.: МГИЭМ, 2005. – 82 с.

12. Кузьменко, Н.В. Конспект лекций по дисциплине «Автоматизация технологических процессов и производств»: учеб. пособие / Н.В. Кузьменко. – Ангарск: АГТА, 2005. – 77 с.

13. Беспалов, А.В. Динамический звенья. Временные характеристики. Учеб. пособие / А.В. Беспалов, Н.И. Харитонов и др. – М.: РХТУ им. Д.И. Менделеева, 2001. – 80 с.

14. Савин, М.М. Теория автоматического управления: учеб. пособие / М.М. Савин, В.С. Елсуков, О.Н. Пятина. – Ростов на Дону: Феникс, 2007. – 469 с.

15. Филлипс, Ч. Системы управления с обратной связью / Ч. Филлипс, Р. Харбор. – М.: Лаборатория Базовых Знаний, 2001. – 616 с.

Рассмотренная выше устойчивость (совместно с критериями ее определения) не является единственным свойством систем автоматического управления. Системы характеризуются: запасом устойчивости, областями устойчивости, притяжения, качеством регулирования и другими характеристиками. Рассмотрим некоторые из них.

Структурная устойчивость (неустойчивость)

Это такое свойство замкнутой системы, при наличии которого она не может быть сделана устойчивой ни при каких изменениях параметров.

Пусть
. Годограф Найквиста для данной системы изображен на Рис.А. Устойчивость этой системы определяется значениями параметров и
. Рассматриваемая система является структурно устойчивой.

Пусть
. (Рис.В). Устойчивость также зависит от параметров и. Система структурно устойчива.

Пусть
. В любом случае (при любых значениях параметров) система будет неустойчива. То есть система является структурно неустойчивой.

В частном случае передаточная функция имеет вид
. При этом соответствующее характеристическое уравнение замкнутой системы: . Нарушен принцип перемежаемости корней и полюсов. Система неустойчива. Структурно неустойчива.

Система с передаточной функцией
- структурно неустойчива, так как для замкнутой системы, при этом коэффициенты
,
,
,
, - все положительны, но из условияследует, что
, откуда
, или
. То есть система неустойчива.

Система
также структурно устойчива. Здесь звено
- квазиапериодическое (статически неустойчиво). Характеристическое уравнение замкнутой системы. Откуда можно получить два граничных условия:
и
.

Для одноконтурных систем имеют место условия (Мейеров М.В.):

Пусть одноконтурная система состоит из:

- интегрирующих звеньев,

- неустойчивых звеньев,

- консервативных звеньев. Тогда при отсутствии в системе дифференцирующих звеньев она будет структурно устойчива в том случае, если

В случае многоконтурных систем соотношения Мейерова необходимо применять к каждому контуру, входящему в систему.

Запас устойчивости

Факт обнаружения устойчивости не дает уверенности в работоспособности системы.

Возможны неточности (погрешности), так как:

    математическое описании системы идеализировано;

    часто бывает произведена линеаризация звеньев;

    неточность определения параметров;

    изменение условий работы (по отношению к моделируемым).

Следовательно, необходим запас устойчивости.

При использовании критерия Гурвица запас определяется величиной предпоследнего минора:

Если
- запас устойчивости отсутствует;
- запас имеется.

Запас устойчивости в системе характеризует степень устойчивости.

Запас устойчивости и степень устойчивости можно определить по расположению корней характеристического уравнения и по частотных характеристикам системы.

Аналогично можно определить запас устойчивости по логарифмическим характеристикам L() и() , применяемым при определении устойчивости по критерию Найквиста.

Область устойчивости

На практике проектировщиков систем автоматического управления интересует пространство (область, пределы, диапазон) параметров, при которых системы является устойчивой. Множество значений параметров, при которых система обладает свойством устойчивости, называется областью устойчивостисистемы.

Для определения областей устойчивости имеется несколько методик.

    На основе алгебраического критерия устойчивости Гурвица;

    Метод Д-разбиения;

    Метод корневого годографа.

Область устойчивости по Гурвицу определяется с помощью использования равенств в условиях Гурвица вместо неравенств. Чаще всего определение границы искомой области может быть произведено при условии
. (Смотри пункт "Определение критического коэффициента усиления"). Отсюда определяется зависимость интересующего нас параметраот параметра. Получаемая зависимость()- граница области устойчивости системы.

В системах более высоких порядков возникает необходимость рассмотрения других миноров. При этом область устойчивости может сужаться.