Режимы работы ибп. Источники бесперебойного питания (ИБП), какие бывают и их принцип работы

Повышение требований к качеству электроэнергии в нынешнее время является вполне закономерным процессом. Требования упомянутых стандартов обусловлены двумя составляющими. К первой можно отнести желание потребителей максимально оградить себя от последствий аварийных ситуаций в энергосистеме. Вторая составляющая связана с условиями работы нагрузки. Сюда следует отнести требования стабильной и непрерывной работы интеллектуального и силового электрооборудования, снижение потерь в питающей сети и прочее. Один из эффективных вариантов технических решений проблемы качества электроэнергии – источники бесперебойного питания (ИБП, англ. UPS).

Основная задача ИБП – обеспечить потребителя электроэнергией в момент выхода параметров качества из регламентируемых норм (просадка, повышение напряжения, значительное искажение формы…). Выполняя эту задачу ИБП может:

  • отключаться от сети питания и передавать мощность нагрузке, используя собственный источник;
  • питать нагрузку скорректированным напряжением питающей сети.

В более дорогих ИБП может быть реализована функция улучшения качества потребляемой электроэнергии (интегрирован корректор коэффициента мощности).

Типы «бесперебойников»

Существуют три базовых типа ИБП.

  1. Резервный ИБП (standby, offline, back-ups). Наиболее простое и дешёвое техническое решение (например, популярный APC Back-UPS CS 500). При значительно повышенном или пониженном напряжении ИБП отключается от сети 220В и переходит на режим работы от аккумулятора. Основные элементы offline ИБП: аккумуляторы (батарея), зарядное устройство, инвертор, повышающий трансформатор, система управления, фильтр (рис. 1).


    а)


    б)
    Рис. 1 Нормальный режим работы (а) и режим работы от аккумуляторов (б)Преимуществом offline ИБП является низкая стоимость и высокий КПД при работе от сети. Недостатки: высокий уровень искажений выходного напряжения (высокий коэффициент гармоник, ≈30% в случае прямоугольного сигнала), отсутствие возможности регулировки параметров входного напряжения. Более подробно характеристики выходного напряжения будут рассмотрены ниже.).
  2. Интерактивный ИБП (англ. line — interactive). Является промежуточным типом между дешёвым и простым offline ИБП и дорогим многофункциональным online ИБП (например, ippon back office 600). В отличие от offline ИБП интерактивный источник имеет автотрансформатор, позволяющий поддерживать уровень выходного напряжения в пределах 220В (+-10%) при просадках / повышениях сетевого напряжения (рис. 2). Как правило, число уровней напряжения автотрансформатора колеблется в пределах двух – трёх.


    (а)


    (б)


    (в)


    (г)
    Рис. 2 Работа интерактивного ИБП при нормальном напряжении сети (а), при просадке напряжения сети (б), при повышенном напряжении сети (в), при исчезновении сетевого напряжения или значительном повышении (г)Регулировка выходного напряжения реализована путём переключения на соответствующую отпайку обмотки трансформатора. При глубокой просадке или значительном повышении, или полном исчезновении сетевого напряжения данный класс ИБП функционирует аналогично offline классу: отключается от сети и генерирует выходное напряжение, используя энергию аккумуляторов. Касательно формы выходного сигнала, она может быть как синусной, так и прямоугольной (или же трапецеидальной).
    Преимущества line — interactive в сравнении с резервным ИБП: меньшее время переключения на автономную работу от аккумуляторов, стабилизация уровня напряжения на выходе. Недостатки: более низкий КПД при работе от сети, более высокая цена (сравнительно с offline типом), плохая фильтрация всплесков (импульсное перенапряжение).
  3. ИБП с двойным преобразованием (англ. double-conversion UPS, online). Наиболее функциональный и дорогостоящий тип ИБП. Бесперебойник всегда включен в сеть. Входной синусный ток проходит через выпрямитель, фильтруется, затем снова инвертируется в переменный. В звене постоянного тока может быть установлен отдельный DC/DC конвертер. Поскольку инвертор всегда находится в работе, задержка на переключение в режим питания от батарей практически равна нулю. Стабилизация напряжения на выходе при просадках или провалах сетевого напряжения более качественная, в отличие от стабилизации line — interactive ИБП. КПД может находиться в пределах 85%÷95%. Напряжение на выходе зачастую имеет синусную форму (коэффициент гармоник <5%).


    Рис. 3 Функциональная схема одного из вариантов online ИБПНа рис. 3 представлена структурная схема варианта online ИБП. Сетевое напряжение здесь выпрямляется полууправляемым выпрямителем. Импульсное напряжение фильтруется и затем инвертируется. В схемах online ИБП может присутствовать один или несколько так называемых байпасов (обходных коммутаторов). Функция такого коммутатора аналогична функции реле: переключение нагрузки для питания от батареи или напрямую от сети.
    На основе структуры online создают не только маломощные однофазные, но и промышленные трёхфазные ИБП. Непрерывность электропитания крупных файловых серверов, медицинской техники, телекоммуникаций осуществляется исключительно на основе online структуры ИБП.
  4. Особые типы ИБП . Используются и другие специфические типы ИБП. К примеру, феррорезонансный источник бесперебойного питания. В данном ИБП специальный трансформатор накапливает заряд энергии, которого должно хватить на время переключения питания от сети на аккумуляторы. Также в качестве источника энергии некоторые ИБП используют механическую энергию супермаховика.

Основные характеристики ИБП.

  1. Мощность . Единицы измерения мощности: вольт-ампер (ВА), ватт (Вт), вольт-ампер реактивный (ВАр). Напомним, что существует полная S, активная Р и реактивная Q мощности. Уравнение, связывающее мощности
    S2=P2+Q2
    Активная мощность (Вт) расходуется на полезную работу, реактивная (ВАр) – не выполняет полезной работы. Соответственно, полная мощность по определению – максимальная мощность, которой должен обладать источник для обеспечения нагрузки необходимой энергией. Отношение активной мощности к полной показывает качество использования электроэнергии и называется коэффициентом мощности (англ. Power Factor, PF):
    (лампы накаливания, обогреватели) имеет PF=1, полная мощность равна активной. ПК, микроволновые печи, кондиционеры имеютПример расчёта.
    Рассчитать источник бесперебойного питания для компьютера (два ПК + два монитора). Мощность ПК легко оценить, зная на какую мощность рассчитан блок питания. Пускай в ПК установлены блоки питания 450 Вт (активная мощность). При неизвестном PF для ПК с блоком питания без PFC (англ. Power Factor Corrector, корректор коэффициента мощности) PF можно принимать равным 0,65. Аналогично PF монитора принимаем равным 0,65. Активная мощность монитора 50 Вт. В результате, общая активная мощность потребителя (два рабочих места)
    Р=450+50+450+50=1000 Вт
    Полная мощность (из формулы 2):
    S= Р/PF=1000/0.65=1538 (ВА).
    Если в блоках питания (БП) ПК и монитора установлен корректор коэффициента мощности (PF=1), то полная мощность S равна активной.
    S=P=1000 (ВА)
    Для нагрузки в виде ПК можно рассчитывать ИБП без запаса по мощности, исходя из следующих фактов:
  • Компьютерные блоки питания имеют защиту от перегрузки. Иными словами, ПК не сможет потреблять мощность, большую, чем заявленная мощность БП.
  • Мощность блока питания – максимальная мощность. По факту в ненагруженном режиме (сразу после запуска) ПК потребляют около 50% своей мощности.

Результат.
Итак, необходимые минимальные параметры ИБП:

  • для ПК с блоками питания без PFC – 1кВт / 1540 ВА.
  • для ПК с блоками питания с PFC – 1кВт/ 1кВА.

Для первого варианта подойдёт источник бесперебойного питания apc Smart-UPS C 2000VA (линейно – интерактивный ИБП 2кВА / 1.3 кВт). Для второго — ИБП Ippon Smart Winner 1500 (1.35 кВт) или Eaton 5SC 1500 ВА (1.05 кВт).
При расчёте важно учесть кратковременное повышение мощности для такой нагрузки, как электродвигатели. В моменты пуска ток Iпуск в пять, семь раз выше номинального Iн:
Iпуск=(5÷7)*Iн


Особенности применения.

Источники бесперебойного питания для котла отопления, а также источники бесперебойного питания для газовых котлов имеют особенность, связанную с режимами работы нулевого проводника. Зачастую автоматика котла требует подключение нейтрали сети. Дело в том, что цепь контроля пламени горелки подключена к заземлению и в четырёхпроводной сети 220В нулевой проводник и заземление котла в конечном счёте замыкаются через физическую землю. Однако, при обрыве нейтрали или при механическом отключении нуля потребителя от нуля сети питания (автономная работа offline ИБП) цепь контроля пламени оказывается разорванной. Для устранения этой проблемы возможны следующие решения:


Выводы

Начальный пункт выбора источника бесперебойного питания – определение характера нагрузки (ИБП для компьютера, для котлов отопления…). Для ответственных потребителей и устройств, содержащих электродвигатели переменного тока, следует выбирать дорогие и функциональные online ИБП. Для ПК и офисной аппаратура подойдут более дешёвые line-interactive или back ИПБ. Следующий пункт выбора – вычисление мощности и времени работы от батарей ИБП. Также следует предусмотреть возможность использования «сквозного» нуля. При формировании конечного решение следует учитывать популярность брендов на рынке: лидеру APC принадлежит около 50% всех продаж, далее со значительным отрывом следуют Ippon, Eaton Powerware, Powercom.

Промышленное решение: ИБП, вместе с защищаемым оборудованием, смонтирован в 19-дюймовую стойку

Источники бесперебойного электропитания развивались параллельно с компьютерами и другими высокотехнологическими устройствами для надежного питания этого оборудования, чего стандартные сети электроснабжения обеспечить не могут. :128 Наиболее широко распространены конструкции в качестве отдельного устройства, включающего в себя аккумулятор и преобразователь постоянного тока в переменный. Также в качестве резервного источника могут применяться маховики и топливные элементы. В настоящее время мощность ИБП находится в диапазоне 100 Вт … 1000 кВт (и более), возможны различные величины выходных напряжений. :142

Причины использования

Кратковременные нарушения нормальной работы электрической сети являются неизбежными. Причиной большинства кратковременных нарушений электроснабжения являются короткие замыкания. Полностью защитить электрическую сеть от них практически невозможно или, во всяком случае, это стоило бы очень дорого. :с. 6 Кратковременные перерывы питания случаются значительно чаще, чем длительные. Длительного перерыва питания возможно избежать используя автоматический ввод резерва (АВР) . При этом кратковременные перерывы питания будут не только при коротком замыкании на любой из питающих АВР линий, но и на линиях, питающих соседних потребителей. :с. 8

Бесперебойное от гарантированного электропитания отличается тем, что в случае гарантированного электропитания допускается перерыв на время ввода в действие резервного источника. В случае бесперебойного электропитания требуется «мгновенный» ввод в действие резервного источника. Это важное требование ограничивает круг пригодных к применению в источниках бесперебойного питания резервных источников. На практике обычно может быть применен только один такой источник - аккумуляторная батарея.

Основной функцией ИБП является обеспечение непрерывности электропитания посредством использования альтернативного источника энергии. Кроме того, ИБП повышает качество электропитания, стабилизируя его параметры в установленных пределах. В ИБП в качестве накопителя энергии обычно используются химические источники тока. Кроме них могут применяться и иные накопители. :п. 1.1 В качестве первичного источника может использоваться электропитание, поступающее от электросети или генератора. :п. 3.1.3

Промышленность

Сложное технологическое оборудование современного промышленного производства не может нормально функционировать, если электроснабжение не бесперебойное. Для многих промышленных предприятий перерыв питания на несколько секунд или даже на десятые доли секунды ведет к нарушению непрерывного технологического процесса и к остановке производства. :с. 5

Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать АВР. :с. 61

Для электродвигателей провалы напряжения в сети 0,4 кВ длительностью 0,3…0,5 с могут привести к тому, что векторы остаточной ЭДС электродвигателей могут оказаться в противофазе с векторами напряжения сети. В результате при восстановлении питания произойдет срабатывание электромагнитных расцепителей автоматических выключателей и окончательное отключение электродвигателей. При этом провалы напряжения длительностью менее 0,3 с не представляют опасности, поэтому для электродвигателей борьба с провалами напряжения обычно направлена на предотвращение отключения контакторов в цепи главного питания 0,4 кВ. Одной из таких мер является питание цепей управления контактора от источника бесперебойного питания. :с. 251

Восприимчивость промышленных контролёров на логических микросхемах к провалам напряжения аналогична восприимчивости компьютеров. :160

Нарушение работы контакторов и реле может произойти при прерывании напряжения 5…10 мс и 80…120 мс. Разница в работе одного и того же устройства возникает из-за разницы в мгновенной величины напряжения переменного тока, когда начался провал напряжения. При прохождении напряжения через ноль устойчивость более чем в 10 раз больше. :165

В быту и офисах

Наиболее распространенное в быту и офисах применение - выключение компьютера без потери данных при отключении электроэнергии. При провалах напряжения длительностью 0,2 с происходит остановка процедур чтения/записи компьютера; 0,25 c - блокировка операционной системы; 0,4 c - перезагрузка. :158

Аварийное

Источники питания, которые используются в случае перерыва нормального питания делятся на резервные и источники питания для систем безопасности.

Регулирование

Международной электротехнической комиссией принята группа стандартов:

Международная классификация ИБП

История электронных ИБП переменного тока начинается с изобретения в 1957 году тиристоров . В 1964…1967 гг. были созданы ИБП с резервированием мощностью до 500 кВА. К настоящему времени основное изменение в конструкции состоит в замене тиристоров на IGBT транзисторы. :130

Резервная схема

Недостатки: в режиме «от сети» не выполняет функцию фильтрации пиков, и обеспечивает только крайне примитивную стабилизацию напряжения (обычно 2-3 ступени автотрансформатора, переключаемые релейно, функция называется «AVR»).

В режиме «от батарей» некоторые, особенно дешёвые, схемы выдают на нагрузку частоту куда выше 50 Гц, и осциллограмму переменного тока, имеющую мало общего с синусоидой. Это связано с применением классического трансформатора крупного размера в схеме (вместо инвертора на полупроводниковых ключах). В связи с тем, что трансформатор данного габарита имеет (в связи с возникновением гистерезиса в сердечнике) ограничение на передаваемую мощность, которое линейно растет с частотой, данного трансформатора (занимает 1/3 объёма всего ИБП) хватает для питания цепи зарядки батарей на 50 Гц в режиме «от сети». Но, в режиме «от батарей», через этот трансформатор нужно пропустить уже сотни ватт мощности, что возможно только путём повышения частоты.

Это приводит к невозможности питания приборов, использующих, например, асинхронные двигатели (почти вся бытовая техника , включая отопительные системы).

По сути, от такого ИБП можно питать только приборы, нетребовательные к качеству питания, то есть, например, все приборы с импульсными БП, где питающее напряжение немедленно выпрямляется и фильтруется. То есть компьютеры и значительная часть современной бытовой электроники. Также можно питать осветительные и обогревательные приборы.

Схема двойного преобразования

Режим двойного преобразования (англ. online , double-conversion, онлайн) - используется для питания нагруженных серверов (например, файловых), высокопроизводительных рабочих станций локальных вычислительных сетей, а также любого другого оборудования, предъявляющего повышенные требования к качеству сетевого электропитания. Принцип работы состоит в двойном преобразовании (double conversion) рода тока. Сначала входной переменный ток преобразуется в постоянный , затем обратно в переменный ток с помощью обратного преобразователя (инвертора). При пропадании входного напряжения переключение нагрузки на питание от аккумуляторов не требуется, поскольку аккумуляторы включены в цепь постоянно (т. н. буферный режим работы аккумулятора) и для этих ИБП параметр «время переключения» не имеет смысла. В маркетинговых целях может использоваться фраза «время переключения равно 0», правильно отражающая основное преимущество данного вида ИБП: отсутствие промежутка времени между пропаданием внешнего напряжения и началом питания от батарей. ИБП двойного преобразования имеют невысокий КПД (от 80 до 96,5 %) в режиме on-line, из-за чего отличаются повышенным тепловыделением и уровнем шума. Однако у современных ИБП средних и высоких мощностей ведущих производителей предусмотрены разнообразные интеллектуальные режимы, позволяющие автоматически подстраивать режим работы для повышения КПД вплоть до 99 %. В отличие от двух предыдущих схем, способны корректировать не только напряжение, но и частоту (VFI по классификации МЭК).

Достоинства:

  • отсутствие времени переключения на питание от батарей;
  • синусоидальная форма выходного напряжения, то есть возможность питать любую нагрузку, в том числе отопительные системы (в которых есть асинхронные двигатели).
  • возможность корректировать и напряжение, и частоту (более того, такой прибор одновременно является и самым лучшим из возможных стабилизаторов напряжения).

Недостатки:

  • Низкий КПД (80-94 %), повышенная шумность и тепловыделение. Практически всегда прибор содержит вентилятор компьютерного типа, и потому не бесшумен (в отличие от line-interactive ИБП).
  • Высокая стоимость. Примерно вдвое-втрое выше, чем line-interactive.

ИБП постоянного тока

Характеристики ИБП

Конструкция

Устройства хранения электроэнергии

Химические

Реализация основной функции достигается работой устройства от аккумуляторов , установленных в корпусе ИБП, под управлением электрической схемы, поэтому в состав любого ИБП, кроме схемы управления , входит зарядное устройство , которое обеспечивает зарядку аккумуляторных батарей при наличии напряжения в сети, обеспечивая тем самым постоянную готовность к работе ИБП в автономном режиме. Для увеличения времени автономного режима работы можно оснастить ИБП дополнительной (внешней) батареей.

В источниках бесперебойного электропитания могут быть использованы химические источники тока (ХИТ):

Динамические

Конденсаторы

При использовании АВР постоянного тока с использованием релейной схемы можно использовать для исключения перерывов питания на время переключения конденсатор большой ёмкости. :с. 229

Байпас

Байпасом называется один из составляющих ИБП блоков. Режим байпас (англ. Bypass , «обход») - питание нагрузки отфильтрованным напряжением электросети в обход основной схемы ИБП. Переключение в режим Bypass выполняется автоматически или вручную (ручное включение предусматривается на случай проведения профилактического обслуживания ИБП или замены его узлов без отключения нагрузки). Может делать т. н. фазануль («сквозной нуль»). Применяется в online-схемах, более того, выключенный кнопкой OFF online UPS остаётся в режиме байпаса, то же самое происходит при разрушении силовых компонентов схемы, определённом управляющими цепями, а также при аварийном отключении схемы по перегрузке выхода. В line-interactive UPS режим работы «от сети» и есть байпас.

Стабилизатор переменного напряжения

Используется в ИБП, которые работают по интерактивной схеме. Часто ИБП оснащается только повышающим «бустером» (англ. booster ), который имеет всего лишь одну либо несколько ступенек повышения, но есть модели, которые оснащены универсальным регулятором, работающим и на повышение (boost), и на понижение (buck) напряжения. Использование стабилизаторов позволяет создать схему ИБП, способную выдержать долгие глубокие «подсадки» и «проседания» входного сетевого напряжения (одной из наиболее распространённых проблем отечественных электросетей) без перехода на аккумуляторные батареи, что позволяет значительно увеличить срок «жизни» аккумуляторной батареи.

Инвертор

Инвертор - устройство, которое преобразует род напряжения из постоянного в переменное (аналогично переменное в постоянное). Основные типы инверторов:

  • инверторы, которые генерируют напряжение прямоугольной формы;
  • инверторы с пошаговой аппроксимацией;
  • инвертор с широтно-импульсной модуляцией (ШИМ) .
  • преобразователь с импульсно-плотностной модуляцией (ИПМ, англ. Pulse-density modulation )

Показатель, который характеризует степень отличия формы напряжения или тока от идеальной синусоидальной формы - коэффициент нелинейных искажений (англ. ). Типовые значения:

  • 0 % - форма сигнала полностью соответствует синусоиде;
  • порядка 3 % - форма, близкая к синусоидальной;
  • порядка 5 % - форма сигнала, приближенная к синусоидальной;
  • до 21 % - сигнал имеет трапецеидальную или ступенчатую форму (модифицированный синус или меандр);
  • 43 % и свыше - сигнал прямоугольной формы (меандр).

Для уменьшения влияния на форму напряжения в питающей электросети (если входным узлом ИБП, построенного по схеме с двойным преобразованием, является тиристорный выпрямитель, элемент нелинейный и потребляющий большой импульсный ток, такой ИБП становится причиной появления гармоник высшего порядка) во входной цепи ИБП устанавливается специальный THD-фильтр . При использовании транзисторных выпрямителей коэффициент нелинейных искажений (англ. Total Harmonic Distortion, THD ) составляет порядка 3 %, и фильтры не используют.

Трансформатор

Гальваническую развязку между входом и выходом (как правило, в ИБП таковая не делается вообще из принципиальных соображений пропуска «сквозного нуля» на нагрузку, то есть отсутствия любой коммутации провода нейтрали от входа UPS до его выхода) осуществляет установленный во входной цепи ИБП (между электросетью и выпрямителем) входной изолирующий трансформатор . Соответственно, в выходной цепи ИБП между преобразователем и нагрузкой размещён выходной изолирующий трансформатор , который обеспечивает гальваническую развязку между входом со схемы ИБП и выходом на подключенную нагрузку.

Интерфейс

Для расширенного мониторинга состояния самого ИБП (например, уровень заряда батарей, параметры электрического тока на выходе) применяются различные интерфейсы : для подключения к компьютеру - последовательный (COM) порт или USB , при этом производителем ИБП поставляется фирменное программное обеспечение , которое позволяет, проанализировав ситуацию, определить время работы и дать оператору возможность безопасно выключить компьютер, завершив работу всех программ. Для наблюдения за состоянием источников бесперебойного питания и другого оборудования через локальную вычислительную сеть используется протокол SNMP и специализированное программное обеспечение.

Для того, чтобы повысить надёжность всей системы в целом, применяется резервирование - схема, которая состоит из двух или более ИБП.

Производители

Распределение продаж ИБП по производителям (2017 г., «IT Research»).

Режимы работы источников бесперебойного питания с двойным преобразованием напряжения

On-Line ИБП имеет два основных рабочих режима:

A) Сетевой режим (или Online режим).
ИБП работает в этом режиме, когда входная сеть находится в допустимом диапазоне (входной диапазон – см. технические данные ИБП). В этом режиме нагрузка питается по схеме «Входная сеть -> Выпрямитель -> Инвертор -> Нагрузка». При этом Зарядное устройство работает, аккумуляторные батареи (АКБ) заряжаются.

B) Батарейный (автономный) режим (или режим Onbattery / Battery Mode).
ИБП переходит в автономный режим, если входное сетевое напряжение находится за пределами допустимого диапазона (входной диапазон – см. технические данные ИБП). Нагрузка питается по схеме «АКБ -> Инвертор -> Нагрузка». Зарядное устройство не работает, батареи разряжаются.

Переходы между режимами A) и B) осуществляются без прерывания напряжения на выходе (время переключения равно нулю). Переходные процессы отсутствуют.

Замечание: в технических характеристиках входной диапазон обычно обозначатся как «входной диапазон ИБП без перехода на АКБ» или «допустимый диапазон изменения входного напряжения (без перехода на батареи)».

Изначальное включение ИБП рекомендуется проводить, когда сеть в норме, т.е. ИБП начинает работать в сетевом режиме. Также допускается запуск и без сети («холодный» старт или старт от батарей), но при этом надо быть уверенным что АКБ в норме. Рекомендуется не перегружать ИБП, так как большинство нагрузок не стабильны. Рекомендуемая максимальная загрузка ИБП составляет 75%. Необходимо также следить, что бы пусковые токи нагрузки (если таковые есть) не превышали номинальную выходную мощность ИБП.

Внимание! Эксплуатация ИБП без АКБ запрещена, за исключением случая, когда производится замена батарейного комплекта.

Помимо двух основных режимов работы ИБП имеет два сервисных режима байпас (bypass):

Они также могут называться аварийным режимом или режимом обслуживания.

Также может быть назван «спящим» или «ждущим» режимом.

В этот режим ИБП переходит, если пропало входное сетевое напряжение и ИБП отработал положенное время в батарейном режиме, батареи разрядились до установленного минимального порога (энергия батарей исчерпана) и нагрузка была обесточена. Теперь устройство работает в режиме ожидания сети − все силовые блоки в нём отключены, работают только плата управления, центральный процессор (ЦП), экран, ЦП ждет появления входного напряжения.

Возможны два варианта:

  • Если сеть появится в течение нескольких часов (или нескольких суток в зависимости от типа АКБ) пока ИБП находится в режиме ожидания сети, то ИБП полностью запустится и перейдёт в обычный сетевой рабочий режим (A).
  • Если сеть не появится в течение длительного времени (временной порог зависит от типа АКБ), то ИБП отключится полностью.

Внимание: так же см. Дополнение 1 к данной статье «Логика разряда, автовыключения после разряда, включения при восстановлении входной сети».

Замечание: некоторые ИБП с активированной функцией «полного автостарта» режима ожидания (входной) сети не имеют, то есть после пропадания входной сети и отработки положенного времени в батарейном режиме, ИБП полностью отключается.

On-Line ИБП имеют аварийный режим:

G) Аварийный режим работы.
ИБП переходит в него, когда какой либо внутренний датчик посылает на ЦП аварийный сигнал, например, превышение температуры, или завышение выходного напряжения инвертора. В этом случае соответствующий силовой аварийный блок отключается, подается звуковая и / или световая сигнализация. При необходимости нагрузка переключается на питание по линии байпас.

Также аварийный режим или аварийная сигнализация может кратковременно активироваться в процессе старта / самотестирования, это нормально.

Внимание: во многих моделях ИБП аварийная звуковая и световая сигнализации подается следующим образом: горит красный светодиод (Fault), издаётся постоянный звуковой сигнал.

Внимание: если аварийное событие не является существенным, например, незначительная перегрузка (или превышение температуры), то при устранении источника проблемы, например, снижении нагрузки (или температуры в помещении), ИБП автоматически вернется в рабочий режим. Но, при серьёзной аварии (например, была большая перегрузка, при этом сам ИБП не повреждён), агрегат может заблокироваться и для его возврата в рабочий режим необходимо пороизвести полный перезапуск устройства с его отключением.

On-Line ИБП имеют следующие режимы старта:

H) Режим старта
Это переходный (кратковременный) режим, в котором находится ИБП или блок бесперебойного питания в процессе перехода от выключенного состояния к полностью включённому.

Возможные варианты старта:

  1. «Холодный» старт. ИБП отключен. Входной сети нет. Вручную запускаем инвертор. ИБП переходит в нормальный батарейный режим.
  2. Старт от сети. ИБП отключен. На вход ИБП подаётся напряжение (входная сеть в норме). ИБП переходит в режим заряда АКБ с отключенным инвертором (режим E).
  3. Старт инвертора. ИБП находится в режиме заряда АКБ с отключенным инвертором (режиме E). Сеть в норме. Вручную запускаем инвертор. ИБП переходит в нормальный Online режим (A).
  4. Автостарт при восстановлении сети. ИБП находится в режиме ожидания входной сети (F). Сеть появилась. ИБП переходит в нормальный Online режим (A).
  5. Полный автостарт от сети. ИБП отключен. На вход ИБП подаётся напряжение (входная сеть в норме). ИБП переходит в нормальный Online режим (A), если есть функция полного автостарта.
  6. Старт по программе.
  7. И другие

Внимание! В режиме старта при наличии сети большинство ИБП временно активируют байпас (нагрузка запитана через электронный байпас). Это типовое поведение большинства моделей ИБП по умолчанию. Однако, при активации функции блокировки электронного байпаса при выключенном инверторе (см. ниже), даже в режиме старта байпас не включится!

Внимание! Если входная сеть в норме, то после выхода ИБП из режима старта возможны два варианта:

  1. ИБП переходит в режим заряда АКБ с отключенным инвертором (E), при этом большинство ИБП работают в режиме электронного байпаса (так ведет себя большинство ИБП по умолчанию). Но если активирована функция блокировки электронного байпаса при выключенном инверторе (см. ниже), то байпас не включится, нагрузка обесточена! В любом случае, теперь для полного старта ИБП требуется запуск инвертора кнопками. Так ведет себя большинство ИБП по умолчанию.
  2. Если в ИБП активирована функция полного автозапуска при наличии сети (см. ниже), то после выхода из режима старта ИБП автоматически запускает инвертор и ИБП автоматически полностью запускается и переходит в рабочий сетевой режим (A).

Замечание: обычно в этом режиме ИБП проводит самотестирование (см. режим I).

Замечание: некоторые ИБП в этом режиме проводят тест АКБ (cм. режим J).

On-Line ИБП имеют режим самотестирования:

I) Режим самотестирования.
В этом режиме ЦП проверяет все внутренние блоки ИБП, при обнаружении неисправности даётся соответствующая аварийная сигнализация. В большинстве ИБП режим активируется в процессе старта ИБП. Часто тестирование ИБП и АКБ совмещено.

On-Line ИБП имеют режим тестирования АКБ:

J Режим тестирования АКБ.
В этом режиме выпрямитель выключается, то есть ИБП принудительно переводится в батарейный режим, нагрузка питается от батарей, по кривой разряда АКБ ЦП делает вывод об исправности АКБ, при необходимости даётся аварийная индикация о неисправных или подлежащих замене батареях.

Замечание: во многих ИБП при успешном завершении теста не выдаётся никаких сообщений, при отрицательном результате выдаются соответствующие сигналы, например, звуковой сигнал, оранжевый светодиод «батарея неисправна» (weak battery) или аналогичное сообщение на экране, загорается знак перечеркнутой батареи и т.д.

Замечание: режим можно активировать принудительно кнопками вручную, с помощью ПО, по специальной внутренней программе ЦП.

Замечание: в некоторых ИБП может быть включено периодическое тестирование АКБ.

Замечание: в некоторых ИБП режим тестирования активируется в процессе старта ИБП или его инвертора, и если тест не прошёл, например, батареи истощены или не подключены, то ИБП не стартует.

Дополнение I

1. Логика работы

1.1 Логика разряда, автовыключения после разряда, включения при восстановлении входной сети

Сеть в норме

  • ИБП мощностью 1000 ВА / 700 Вт (c АКБ 9-12 Ач) включен вручную.
  • Подключена нагрузка. ИБП работает на нагрузку 50% (350Вт) в сетевом режиме. ИБП имеет расчетное время автономии 30 минут.
  • Идет заряд батарей. Напряжение плавающего подзаряда на одну 12В АКБ (float charge voltage) ~ 13.6 ... 13.8В (реже, для некоторых моделей 13.8 ... 14.2 В).
  • Сеть пропала, ИБП перешел в батарейный режим.
  • ИБП нормально питает нагрузку в батарейном режиме в течение 30 минут.
  • По истечение 30 минут выход ИБП отключается (АКБ разряжены, нагрузка обесточена). Это происходит в момент когда напряжение на каждой 12-вольтовой батарее достигло значения 10 В. Это паспортная уставка конца разряда большинства свинцово-кислотных AGM герметичных АКБ. Но сам ИБП продолжает работать, работает плата логики, ЦП, экран. Этот режим можно назвать режимом ожидания сети (F).
  • В момент отключения нагрузки напряжение батарей увеличивается до 11-12 В на батарею, так как разрядная мощность резко снизилась с ~360 Вт до примерно 10 Вт (платы логики ИБП 1-3 кВА потребляют 5-15 Вт), поэтому ИБП имеет возможность ещё долго работать.
  • В этом режиме ожидания сети (F) ИБП может находиться от нескольких часов до нескольких суток в зависимости от количества и ёмкости АКБ.
    • Если входная сеть появилась когда ИБП находится в режиме ожидания сети, то ИБП автоматически полностью вернётся в нормальный сетевой режим.

Замечание: ИБП может активировать инвертор не сразу а через некоторое время, когда АКБ достаточно зарядятся. Это соответствует заложенной в ЦП программе – ИБП не должен включаться полностью до заряда АКБ и пока не будет гарантировано хотя бы минимальное время автономии. Такой алгоритм защищает ИБП от случаев кратковременного появления и исчезновения сетевого напряжения и др.

    • Если входной сети нет, то в этом режиме её ожидания ИБП будет находиться (от нескольких часов до нескольких суток в зависимости от количества и ёмкости АКБ) до того момента, когда напряжение на каждой 12-вольтовой АКБ не упадет до значения 10 В (в некоторых ИБП до 7-9 В на батарею). По достижении данного порога ИБП отключится полностью.
  • ИБП находится в отключенном состоянии.
  • Теперь, если сеть появится, то ИБП полностью включится самостоятельно (даже при сильно разряженных / неисправных / отсутствующих АКБ) только в случае наличия функции автостарта (это опция, см. ниже). В большинстве ИБП этой функции нет по умолчанию, тогда ИБП можно запустить полностью только вручную. При этом большинство ИБП запустятся нормально даже при сильно разряженных / неисправных АКБ. Однако, есть модели устройств с тестом АКБ при старте, которые не запустятся если АКБ неисправны / разряжены ниже нормы / отсутствуют. Обычно АКБ могут сильно разрядиться, если сеть пропала, ИБП отработал время автономии, затем отключился и был оставлен отключенным (без входной сети!) в течение нескольких недель / месяцев.

Замечание: цифры выше приведены примерные / /возможны другие значения

1.2 Логика работы в зависимости от частоты входной сети. Входная, выходная частота

Аналогично диапазону допустимого напряжения входной сети ИБП имеет также диапазон допустимой частоты входной сети:

  • ИБП работает в сетевом Online режиме (A), когда частота входной сети находится в допустимом диапазоне (см. технические данные ИБП).
  • ИБП переходит в батарейный режим (B), если входная сеть находится за пределами допустимого диапазона частотного диапазона (см. технические характеристики ИБП).

В батарейном режиме при отсутствии входной сети частота напряжения на выходе ИБП высоко стабильная (кварцевая стабилизация) за счет отсутствия синхронизации с сетью. Типовое значение точности поддержания частоты составляет для разных типов ИБП составляет от 50 Гц +/-0.05% до 50 Гц +/-0.5%.

В сетевом режиме (A) выходное напряжение ИБП синхронизировано с входным сетевым напряжением, то есть, если частота входной сети находится в допустимом диапазоне, то частота на выходе равна частоте на входе. Синхронизация (равенство фаз и частот) необходимы для безопасного перехода между инверторным и байпасным режимами.

Пример 1 : входной диапазон частоты для 2 кВА: 50Гц ±4 Гц. Частота входной сети 52 Гц. На выходе ИБП имеем 52 Гц. ИБП работает в сетевом режиме (A).

Пример 2 : входной диапазон частоты для 2 кВА: 50 Гц ±4 Гц. Частота входной сети 55 Гц. На выходе ИБП имеем 50 ±0.25 Гц. ИБП работает в батарейном режиме (B).

Замечание: Иногда проблемы с частотой (при синхронизации ИБП с сетью) возникают при питании ИБП различных дизельных генераторов. Убедитесь, что мощность генератора выбрана правильно и его частота и напряжение в норме. Обратитесь в сервисный центр.

Замечание: в некотрых ИБП диапазон допустимой частоты входной сети может быть изменён по запросу.

2 Дополнительные функции

2.1 Функция 1: блокировка электронного байпаса при выключенном инверторе

Function 1: деактивация байпасной линии при старте от сети (disabled bypassline when UPS is started with input power)

Пока инвертор не работает, электронный байпас выключен. Байпас также выключен и в процессе старта и тестирования.

Изначально ИБП полностью отключен. Подключаем ИБП к сети. Инвертор всегда выключен! Нагрузка продолжает быть обесточена пока мы не запустим инвертор (или он не запустится автоматически).


Во входной сети присутствует опасно высокое напряжение 247 Вольт, что является слишком высоким значением. Если байпас включится при включении ИБП (в режиме старта, тестирования, в режиме заряда АКБ с отключенным инвертором), то это может повредить нагрузку, поэтому нужен режим блокировки байпаса чтобы ее обезопасить.

Внимание!

Внимание! Даже если эта функция блокировки активирована, то байпас все равно включится при перегрузке, аварии и т.д. Если это недопустимо, то линию байпаса можно отключить полностью от сети, но пользователь должен понимать, что он этим резко снижает безопасность системы.

Замечание: в некоторых ИБП данная функция может быть активирована самостоятельно (например: Pro-Vision Black M) .

Замечание : в некоторых ИБП данная функция может быть активирована по запросу.

2.2 Функция 2: полное автоматическое включение (автозапуск) при наличии сети

Function 2: полный автостарт ИБП при наличии сети (complete autostart of UPS when mains ok)

Изначально ИБП полностью отключен. Подключаем ИБП к сети. ИБП стартует полностью автоматически сам. Для полного старта ИБП не нужно нажимать кнопки.

Пример когда эта функция необходима:
ИБП расположены на удалённых базовых станциях GSM, поэтому невозможно включить ИБП вручную после того как они полностью отключатся (после длительного отсутствия сети), поэтому нужен автостарт.

Внимание! В большинстве ИБП эта функция отключена по умолчанию.

Замечание: в некоторых ИБП функция может быть активирована по запросу, например, в 1-3 кВА LT.

Замечание: в некоторых ИБП эта функция активирована по умолчанию (Smart-Vision S , Power-Vision старых версий).

2.3 Функция установки диапазона электронного байпаса

Линия электронного байпас может активироваться (например, при перегрузке) только, если напряжение входной сети находится в определенном диапазоне (см. технические характеристики ИБП). Например: 220 В ±10%.

Внимание: не путайте данный диапазон линии байпас со входным диапазоном ИБП без перехода на АКБ (см. выше).

Внимание: диапазон напряжения на входе байпас обычно невелик. Это связано с тем, что при переходе байпас <-> инвертор нагрузка должна быть переподключена с напряжения 220 В (инвертор) к линии байпас 220 В ±10%.

Если бы диапазон напряжения на входе байпас был шире, то могли бы возникнуть следующие проблемы:

  • Переключение нагрузки с линии 220 В на линию 150 В вызывает опасный бросок тока.
  • Питание нагрузки напряжением например 140 В нецелесообразно или даже опасно.

Внимание: на некоторых ИБП этот диапазон можно изменить. Однако, лучше этого не делать без необходимости! Во избежание повреждений ИБП.

On-Line ИБП в линейно-интерактивном режиме

Замечание: ИБП N-Power по умолчанию выпускаются в Российском и Европейском стандарте фазного напряжения 220 В, 230 В (для трехфазных моделей соответственно линейное напряжение 380 В, 400 В).

Внимание! Не меняйте настройки выходного напряжения без острой необходимости.

2.7 Функция установки номинальной / выходной частоты ИБП

Стандартами частоты являются следующие значения: 50 Гц, 60 Гц.

Возможность изменения номинальной / выходной частоты для всех ИБП различна. Обращайтесь за консультацией в наш сервисный центр. В большинстве случаев изменение возможно только на заводе по предварительному заказу или в сервисном центре N-Power.

Замечание: ИБП N-Power по умолчанию выпускаются в Российском и Европейском стандарте частоты напряжения 50 Гц.

On-Line ИБП в режиме стабилизатора / преобразователя частоты

При отключенной байпасной (резервной) линии или блока синхронизации многие ИБП могут работать как преобразователи (например 60 Гц -> 50 Гц) или стабилизаторы частоты. По всем вопросам связанным с этим режимом обращайтесь в сервисный центр N-Power.

Дополнение II

Вопрос клиента по 1000 LT:
Понятно, что по вашим требованиям ИБП нельзя эксплуатировать без АБ. Но, хотелось бы понять будет ли включаться инвертор при отсутствии АБ при включении в сеть? Тот же случай если АБ выйдут из строя, что приведет к разряду АБ ниже допустимого уровня. Работает полный старт от сети без АБ или нет, придется проверять самим.

Ответ:

Да для всех малых ИБП завод (инженеры-разработчики) запрещает длительную эксплуатацию ИБП без АКБ т.е. в качестве стабилизатора напряжения. Разрешается эксплуатация ИБП без АКБ до нескольких часов на время замены батарей.Поэтому, при попытке длительной эксплуатации ИБП без АКБ вы лишаетесь гарантии. Включение инвертора, в том числе при плохих / отсутствующих АКБ описано в данной статье выше.

Случаи неисправных или сильно разряженных (даже отсутствующих) АКБ могут быть схожи / неразличимы, поэтому ответ на ваш вопрос «Работает ли полный автостарт от сети при неисправных / сильно разряженных / отсутствующих АКБ в MEV1000LT»: подтверждаю что, ДА (при заказе ИБП с функцией полного автостарта). Исключение составляют тяжёлые неисправности АКБ в результате которых ЗУ не сможет запуститься и выйти в режим «float charge», например, трещина АКБ и вытекание электролита, КЗ на корпус, в этом случае ИБП перейдет в аварийный режим.

Замечание: функция «полный автостарт при наличии сети» отключена в этой модели ИБП во всех текущих поставках. По заказу поставляются ИБП с включенной этой функцией.

Перечень режимов работы ИБП с двойным преобразованием

Режимы OnLine ИБП:

  • A – сетевой режим (или Online режим)
  • B – батарейный(автономный) режим (или Onbattery режим)
  • С – режим электронного байпас
  • D – режим ручного байпас
  • E – режим заряда АКБ с отключенным инвертором
  • F – режим ожидания (входной) сети
  • G – аварийный режим
  • H – режим старта
  • I – режим самотестирования
  • J – режим тестирования АКБ

Дополнение I:

1 Логика работы

1.1 Логика разряда, автовыключения после разряда, включения при восстановлении входной сети

1.2 Логика работы в зависимости от частоты вх. сети. Входная, выходная частота.

2 Дополнительные функции:

2.1 Функция 1: блокировки электронного байпаса при выключенном инверторе

2.2 Функция 2: полное автовключение (автозапуск) при наличии сети

2.3 Функция установки диапазона электронного байпас

2.4 Возможность(функция) эксплуатации On-Line ИБП в линейно-интерактивном режиме

2.5 Режим (функция) GreenMode

2.6 Функция установки номинального / выходного напряжения ИБП

2.7 Функция установки номинальной / выходной частоты ИБП

2.8 Возможность (функция) эксплуатации On-Line ИБП в режиме стабилизатора / преобразователя частоты

при аварии, обслуживании и при др. необх.
Переход на ручной байпас производится согл. инструкции ИБП (обычно сначала обязательно гасится инвертор и ИБП переводится в электронный байпас) иначе м.б. авария.

Источник бесперебойного питания - компонент системы питания, который располагают между нагрузкой и питающей сетью. Главная функция ИБП состоит в обеспечении бесперебойного питания. Как устроен бесперебойник? Упрощённая схема ИБП включает аккумуляторные батареи и специальные элементы ИБП, компенсирующие возмущения в магистральной сети, а именно инвертор, выпрямитель, фильтр и в некоторых случаях . На сегодняшний день бесперебойники разделяют на три группы. У каждой из групп принцип работы ИБП имеет свои особенности.

Ключевым компонентом ИБП являются . Именно АКБ определяют сколько работает ИБП при отключении питания в сети. Как правило, в ИБП используются свинцово-кислотные аккумуляторы, имеющие следующие параметры: напряжение 12В и ёмкость 7Ач или 9Ач. АКБ относятся к типу герметичных и не обслуживаемых. В самых простых ИБП используется 1 аккумулятор, а в мощных бесперебойниках их количество может быть во много раз больше.

Резервные ИБП

Так называемые резервные ИБП являются самыми простыми и доступными. Принцип работы бесперебойника данного типа крайне прост: электропитание нагрузки осуществляется через сеть, если там имеется напряжение, в противном случае происходит переключение питания от АКБ. Зарядка АКБ осуществляется вовремя работы ИБП. Согласно статистике, эффективность таких ИБП при сбоях питания составляет 55-60%.

В большинстве случаев рассказать о том, как работает ИБП для компьютера, можно сославшись на принцип работы . Большинство домашних бесперебойников для компьютера выполнены по данной технологии. Уровень защиты, который они могут обеспечить является самым низким из всех существующих бесперебойников. Фильтрация сигнала осуществляется лишь частично. Зачастую такого уровня защиты для домашней техники вполне достаточно, так как качество питания в таких сетях несколько выше, чем в промышленных.

Резервные ИБП прекрасно работают в паре с компьютером, но при этом они абсолютно не совместимы для работы в паре с насосами, котлами отопления и другой подобной техникой, так как работа ИБП резервного типа не обеспечивает синусоидальную форму напряжения . Для компьютеров это не критично, так как в них используются коммутируемые источники питания. Этот факт позволяет таким устройствам выдержать небольшой провал питания за счёт наличия некоторого количества энергии в собственных конденсаторах. Время переключения офлайн с сети на АКБ колеблется от 2 до 15 миллисекунд. Схема работы ИБП включает в себя инвертор, который превращает постоянный ток АКБ в переменный. Следует заметить, что такие ИБП, как правило, являются маломощными.

Линейно-интерактивные ИБП

Устройство и работа источников бесперебойного питания интерактивного типа практически идентичен резервным ИБП. Исключением является способность стабилизации напряжения, которое осуществляется с помощью коммутирующего устройства. Преимущество стабилизации заключается в отсутствии необходимости на переключение питания при существенных отклонениях напряжения. Отклонения входного напряжения может достигать порядка 20% от нормального значения. Выходное напряжение бесперебойника при этом практически не колеблется. Эффективность защиты линейно-интерактивных ИБП составляет 85%.

В сравнении с резервными ИБП они обеспечивают более высокий уровень защиты, но уступают . Работа бесперебойника линейно-интерактивно типа может быть разделена на две группы. Устройства, относящие к первой группе, дают на выходе аппроксимированную синусоиду, то есть ступенчатую. Вторая группа выдаёт «чистую» синусоиду без каких-либо искажений. Последние в некоторых случаях могут стать заменой онлайн ИБП. Наличие чистой синусоиды на выходе позволяет применять их для защиты электродвигателей и котлов отопления.

Онлайн ИБП

Самые надёжные и высокотехнологичные ИБП относятся к типу онлайн. В них реализована технология двойного преобразования – самая прогрессивная из всех существующих. Степень защиты обеспечиваемый такими устройствами стремится к 100% независимо от того какие режимы работы ИБП активны: от сети или АКБ.

Как работает ИБП с онлайн топологией? На самом деле принцип работы вложен в само название. Ток на входе преобразуется на выпрямителе в постоянный, после чего инвертор преобразует его снова в переменный. Переменный ток на выходе обладает идеальными параметрами как по форме напряжения, так и по его значению. ИБП содержит в себе резервную линию - байпас , по которой осуществляется питание в случае неисправности какого-либо из узлов источника бесперебойного питания.

Принято говорить, что время переключения на АКБ равно нулю, но на самом деле аккумуляторные батареи всегда подключены к цепи. Поэтому данные ИБП и называются онлайн. Такое устройство бесперебойника позволяет защитить нагрузку от любых видов возмущений, которые могут встречаться в магистральной сети.

Применяются такие ИБП для защиты критической и очень чувствительной нагрузки. Все мощные ИБП выполняются по данной технологии. Несмотря на высокую мощность применяются дополнительные решения, которые позволяют увеличить автономность. Чаще всего конструкция позволяет ИБП - как пользоваться в связке с генератором, так и с внешними АКБ.

Однако, двойное преобразование имеет и свои недостатки. Устройство ИБП является довольно сложным, что влияет на его стоимость не лучшим образом. Наличие двойного преобразования понижает КПД, но на современных ИБП он довольно высокий. Реализованы специальные технологии энергосбережения, позволяющие довести коэффициент полезного действия до максимальных значений. Кроме того, процесс двойного преобразования сопровождается тепловыделением и шумами. Стоит признать, что удельный вес всех этих минусов является несравнимо малым в сравнении со всеми достоинствами, а в главную очередь с уровнем защиты.